

Facilities Management

Policy Number: 700.18 Title: Management of Peroxide Forming Chemicals Policy Implementation Date: July 2011 Last Audited: December 18th, 2018 Last Revised: February 13th, 2017

Introduction

This guideline outlines proper handling, use, and disposal of peroxide-forming chemicals at East Tennessee State University to prevent unsafe conditions and potential explosions. Peroxide-forming chemicals are compounds that may react with oxygen, even in low concentrations and at temperatures often not considered hazardous. Peroxidation is a hazard affecting primarily liquid peroxide formers and finely divided solids. The risk of peroxide formation exists when the compound is exposed to oxygen. This occurs when the container is opened for the first time and is accelerated if containers are not properly sealed. Peroxidation occurs more rapidly at elevated temperatures and pressures. Refrigeration and freezing can cause peroxides to precipitate. Blanketing peroxide formers with an inert gas reduces the opportunity for oxygen to reach the compound during storage, but must be done in accordance with SDS requirements.

Inorganic peroxides are generally stable, but some can be hazardous. They may generate peroxides in the presence of organic compounds, or can react violently in the presence of water. Organic peroxides are carbon-based chemicals that contain the characteristic peroxide (-O-O-) bond. Many organic peroxides are shock, heat, or friction sensitive. Some peroxides quickly build up to high levels making them very explosive, while others are only explosive after concentration (e.g. after distillation).

When a peroxide forming chemical is past expiry or has been classified as a waste please contact the Environmental Health & Safety Office at extension 9-6028, or submit a Chemical Pickup Request. The form is available on the Safety & Health web site: http://healthsafety.etsu.edu/Safety/pickupform.

IF CRYSTALS ARE OBSERVED ON OR IN THE CONTAINER OF A PEROXIDE FORMER, DO NOT MOVE AND CALL THE EHS OFFICE IMMEDIATELY

Policy 700.18 – Management of Peroxide Forming Chemicals Policy Page 1 of 5

Container Labeling

In addition to the original manufacturer's label or secondary label, the containers of all peroxide-forming chemicals must be labeled with the following information:

- WARNING PEROXIDE FORMER or POTENTIALLY EXPLOSIVE PEROXIDE
- Date of purchase
- Date container is first opened
- Required discard date based on the Disposal Requirements below

Storage and Handling

In order to safely manage chemicals that have the potential for forming heat and shock sensitive peroxides, the following should be followed:

- Substitute non-hazardous chemicals whenever possible.
- Order the smallest possible amount for your needs, amount that can be used before disposal timeline.
- Purchase chemicals with inhibitors added when applicable. Inhibitors are depleted over time and must be replenished periodically.
- Store in original containers, when not possible use dark or amber-colored glass bottles with plastic caps. Do not use glass containers with a metal screw cap or glass stopper.
- Use metal cans when storing diethyl ethers. Iron in container inhibits the formation of peroxides.
- Plastic squeeze bottles may be used for small quantities of materials for immediate use, such as 2-propanol, but must be labeled.
- Dispense quantities only as needed.
- Never return unused material to stock container.
- Containers must be well-sealed, and stored away from light at cool temperatures.
- Do not refrigerate or freeze as this may cause peroxides to precipitate, unless directed to per label instructions.
- Provide secondary containment for all liquid storage.
- Never use a metal spatula, use ceramic or plastic instead.
- Follow lab procedures for personal protective equipment and hygiene. Avoid ingestion, inhalation or skin contact.
- Avoid friction, grinding, and any form of impact during handling or transport.
- Do not move or open older containers of peroxidizable chemicals, or containers of unknown age or history. Contact Environmental Health and Safety Office for disposal.
- Any peroxide-forming chemical with visible discoloration, crystallization or liquid stratification should be treated as potentially explosive. Contact Environmental Health and Safety office immediately for disposal.
- Older steel containers that have visible rust may be extremely dangerous.

- Distillation of any peroxide former should not be attempted unless the material has been tested for the presence of peroxide. Uninhibited Class C chemicals should not be distilled.
- Procedures which result in evaporation or extensive exposure to air or oxygen should be avoided unless chemical is first tested for peroxide levels and determined to be safe.
- Peroxide-forming chemicals must be labeled and dated when received. If the material is to be kept longer than the recommended storage time, the material must be tested for peroxides, and the test date and results attached to the container.
- Store all chemicals away from other incompatible chemicals. Most peroxide formers are flammable.
- If the chemical is a flammable and requires refrigerated storage, an explosion-proof refrigerator is required.

Class A	Class B	Class C
Forms explosive levels of peroxides	Forms explosive levels of	May autopolymerize as result of
without concentration	peroxides on concentration	minor peroxide accumulation
Test for peroxides or dispose after	Test for peroxides or dispose after	Test for peroxides or dispose after
12 months after received or 3	12 months after received or	12 months after received or
months after first opened	6 months after first opened	24 hours – uninhibited chemical
		12 months after first opening for
		inhibited chemicals
Butadiene (a)	Acetal	Acrylic acid
Chloroprene (a)	Acetaldehyde	Acrylonitrile
Divinyl acetylene	Benzyl alcohol	Butadiene (b)
Isopropyl (diisopropyl) ether	2-Butanol	Chlorobutadiene
Potassium amide	Cumene (isopropylbenzene)	Chloroprene (b)
Potassium metal	Cyclohexanol	Chlorotrifluoroethylene
Sodium amide	2-Cyclohexen-1-ol	Dibenzocyclopentadiene
Tetrafluoroethylene (a)	Cyclohexene	Indene
Vinylidene chloride	Decahydronaphthalene	Methyl methacrylate
	Diacetylene (butadiene)	
	Dicyclopentadiene	Styrene
	Diethyl ether (Ethyl ether)	Tetrafluoroethylene (b)
	Diethylene glycol dimethyl ether Dioxanes	Vinyl acetate
		Vinyl acetylene
	Ethylene glycol dimethyl ether	Vinyl chloride
	4-Heptanol 2-Hexanol	Vinyl pyridine
	Isopropyl alcohol	Vinyladiene chloride
	Methyl acetylene	
	3-Methyl-1-butanol	
	Methylcyclopentane	
	Methyl isobutyl ketone	
	4-Methyl-2-pentanol	
	2-Pentanol	
	4-Penten-1-ol	
	4-Penten-1-01	

Classes of Peroxide Formers

Policy 700.18 – Management of Peroxide Forming Chemicals Policy

1-Phenylethanol	
2-Phenylethanol	
2-Propanol (IPA)	
Tetrahydrofuran	
Tetrahydronaphthalene	
Vinyl ethers	

a. When stored as a liquid monomer.

b. When stored in liquid form, these chemicals form explosive levels of peroxides without concentration. They may also be stored as a gas in a cylinder and may autopolymerize as a result of peroxide accumulation.

Class D					
Che	micals that may form pe	roxides			
Consult SDS to determine when peroxide formation is expected and label					
and store accordingly. Do not use and immediately contact EHS Office for					
disposal if peroxide crystals are observed.					
Acrolein	Cyclooctene	4,5-Hexadien-2-yn-1-ol			
Allyl ether	Cyclopropyl methyl ether	n-Hexyl ether			
Allyl ethyl ether	Diallyl ether	o,p-lodophenetole			
p-(n-Amyloxy) benzoyl chloride	p-Di-n-butoxybenzene	Isoamyl benzyl ether			
n-Amyl ether	1,2-Didenzyloxyethane	Isoamyl ether			
Benzyl n-butyl ether	p-Dibenzyloxybenzene	Isobutyl vinyl ether			
Benzyl ether	1, 2-Dichloroethyl ethyl ether	lsophorone			
Benzyl ethyl ether	2,4-Dichlorophenetole	b-Isopropoxypropiontrile			
Benzyl methyl ether	Diethoxymethane	Isopropyl-2,4,5-trichlorophenoxyacetate			
Benzyl-1-napthyl ether	2,2-Diethoxypropane	Limonene			
1,2-Bis(2-chloroethoxyl) ethane	Diethyl acetal	1,5-p-Methadiene			
Bis(2-chloroethyl) ether	Diethyl ethoxymethylenemalonate	Methyl-p-(n-amyloxy) benzoate			
Bis(2-ethoxyethyl) adipate	Diethyl fumarate	4-Methyl-2-pentanone			
Bis(2-ethoxyethyl) ether	Diethylketene	n-Methylphenetole			
Bis(2-(methoxyethoxy)ethyl) ether	m,o,p-Diethoxybenzene	2-Methyltetrahydrofuran			
Bis(2-methoxyethyl) carbonate	1,2-Diethoxyethane	3-Methoxy- I-butyl acetate			
Bis(2-methoxyethyl) ether	Dimethoxymethane	2-Methoxyethanol			
Bis(2-methoxyethyl) phthalate	1,1-Dimethoxyethane	3-Methoxyethyl acetate			
Bis(2-methoxymethyl) adipate	Dimethoxyketene	2-Methoxyethyl vinyl ether			
Bis(2-n-butoxyethyl) phthalate	3,3-Dimethoxpropene	Methoxy-1,3,5,7-cyclooctateraene			
Bis(2-phenoxyethyl) ether	2,4-Dinitrophenetole	b-Methoxypropionitrile			
Bis(4-chlorobutyl) ether	1,3-Dioxepane	m-Nitrophenetole			
Bis(chloromethyl) ether	Di(1-propynyl) ether	1-Octene			
2-Bromomethyl ethyl ether	Di(2-propynyl) ether	Oxybis(2-ethyl acetate)			
3-Bromophenetole	Di-n-propoxymethane	Oxybis(2-ethyl benzoate)			
o-Bromophenetole	1,2-Epoxy-3-isopropoxypropane	b,b-Oxdipropionitrile			
p-Bromophenetole	1,2-Epoxy-3-phenoxpropane	1 -Pentene			
3-Bromopropyl phenyl ether	p-Ethoxyacetophenone	Phenoxyacetyl chloride			
1,3-Butadiyne	1-(2-Ethoxyethoxy) ethyl acetate	a-Phenoxypropionyl chloride			
1-Buten-3-yne	2-Ethoxyethyl acetate	Phenyl-o-propyl ether			
t-Butyl ethyl ether	(2-Ethoxyethyl)-a-benzoyl benzoate				
t-Butyl methyl ether	1-Ethoxynaphthalene	n-Propyl isopropyl ether			
n-Butyl phenyl ether	o,p-Ethoxyphenyl isocyanate	Sodium 8,11,14-eicosatetraenoate			
n-Butyl vinyl ether	1-Ethyoxy-2-propyne	Sodium ethoxyacetylide			

Policy 700.18 – Management of Peroxide Forming Chemicals Policy

Chloroacetaldehyde diethylacetal	3-Ethoxypropionitrile	Tetrahydropyran
2-Chlorobutadiene	2-Ethylacrylaldehyde oxime	Triethylene glycol diacetate
1(2-Chlororethoxy)-2-phenoxyethane	2-Ethylbutanol	Triethylene glycol dipropionate
Chloroethylene	Ethyl-b-ethoxypropionate	1,3,3-Trimethoxypropene
Chloromethyl methyl ether	2-Ethylhexanal	l,l,2,3-Tetrachloro-l,3-butadiene
b-Chlorophenetole	Ethyl vinyl ether	4-Vinyl cyclohexene
o-Chlorophenetole	Furan	Vinylene carbonate

Contact Persons

Director of Environmental Health & Safety Environmental Compliance Manager

Approved by: ____

William Brady Rasnick, Jr., Associate Vice President, Facilities Management

Date approved: _____

- Audited: February 6th, 2017 December 18th, 2018
- Revised: November 5th, 2013 February 13th, 2017