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Abstract
Objective. Dry electrodes have an advantage over gel-based ‘wet’ electrodes by providing
quicker set-up time for electroencephalography recording; however, the potentially poorer
contact can result in noisier recordings. We examine the impact that this may have on brain–
computer interface communication and potential approaches for mitigation. Approach. We
present a performance comparison of wet and dry electrodes for use with the P300 speller system
in both healthy participants and participants with communication disabilities (ALS and PLS),
and investigate the potential for a data-driven dynamic data collection algorithm to compensate
for the lower signal-to-noise ratio (SNR) in dry systems. Main results. Performance results from
sixteen healthy participants obtained in the standard static data collection environment
demonstrate a substantial loss in accuracy with the dry system. Using a dynamic stopping
algorithm, performance may have been improved by collecting more data in the dry system for
ten healthy participants and eight participants with communication disabilities; however, the
algorithm did not fully compensate for the lower SNR of the dry system. An analysis of the wet
and dry system recordings revealed that delta and theta frequency band power (0.1–4 Hz and 4–8
Hz, respectively) are consistently higher in dry system recordings across participants, indicating
that transient and drift artifacts may be an issue for dry systems. Significance. Using dry
electrodes is desirable for reduced set-up time; however, this study demonstrates that online
performance is significantly poorer than for wet electrodes for users with and without disabilities.
We test a new application of dynamic stopping algorithms to compensate for poorer SNR.
Dynamic stopping improved dry system performance; however, further signal processing efforts
are likely necessary for full mitigation.

Keywords: brain–computer interface, electroencephalography, dry electrodes, artefact, dynamic
data collection, P300 speller

(Some figures may appear in colour only in the online journal)

1. Introduction

A brain–computer interface (BCI) system allows a person
with severe motor impairments to control a device by inter-
preting measurements of electrical activity in the brain. While
head and eye tracking systems may provide alternative
methods for controlling a device, these systems still require

some muscle function and can fail when this muscle function
is lost (e.g., [1]). Thus, BCIs may provide communication
assistance for people with disabilities that limit the utility of
other communication aids due to their reliance on physical
motion. BCIs that rely on various components of measured
electroencephalographic (EEG) data have been proposed in
the literature (see [2] for a review); one of which that has
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shown potential as a communication device for people with
severe physical limitations is the P300 speller [3]. Operation
of the P300 speller relies on eliciting event-related potentials
(ERPs) to enable the user to spell text on a computer letter by
letter. An ERP is a neural response observed in human brain
activity, and is produced by the brain’s reaction to a specific
task or stimulus. The P300 component of the ERP is a
positive voltage peak that occurs around 300 ms after the
presentation of a rare but relevant stimulus. The name P300
speller refers to the reliance of the speller on this evoked
component in the EEG to determine the BCI user’s intent,
although other ERPs may also be used for classification [4].

Despite encouraging improvements over the last decade,
the P300 speller remains primarily a research device rather
than a home-based communication aid. One limitation that
inhibits its widespread use is the complex and time-con-
suming process of applying the electrodes to the scalp prior to
EEG recording. Although an EEG-based approach has the
advantage over implanted electrodes because it is immedi-
ately accessible to all users since it does not require surgery, it
produces poorer quality signals because neural activity must
be measured after it traverses layers of the skull, skin, and hair
to reach the electrodes. In order to reduce skin impedance and
ensure electrical contact with the scalp, gel-based ‘wet’
electrodes require abrasive skin preparation and the applica-
tion of conductive gel to each electrode. This process can
require 10 min or more for an experienced lab technician. For
people with severe communication disabilities who need to
use the system on a daily basis, minimizing this set-up time is
highly desirable [5].

In an attempt to reduce the required set-up time, the use
of dry electrodes for P300-based BCIs has been explored [6–
9]. Dry electrodes are much faster and easier to apply, as they
do not require the application of gel to the scalp. Instead,
contact dry electrodes contain several metal pins with suffi-
cient length to reach through hair to the skin, coupling signals
both resistively and capacitively. While noncontact dry
electrodes, which operate primarily via capacitive coupling,
have been shown to successfully record steady-state visual
evoked potentials, signal quality is reduced when compared to
contact dry electrodes [10]. Therefore, the focus of this paper
will be on contact dry electrodes. Active dry electrodes
employ a local high input impedance amplifier attached to
each electrode that rejects interference at the recording site.
However, due to poor skin-to-electrode contact, dry systems
are much more sensitive to noise and ERP variation [11]. The
lower signal-to-noise ratio (SNR) can decrease the detect-
ability of ERPs used for BCI control, which may negatively
impact both the speed and accuracy of the system. For this
reason, wet electrodes remain the standard for P300-
based BCIs.

Several studies have evaluated the performance of dry
electrodes in comparison to wet electrodes with P300-based
BCI technology in healthy participants with mixed results. In
a comparison of the hybrid dry electrode sensor array system
to a conventional wet system, Sellers et al [6] observed higher
P300 speller accuracy with the wet system for four out of
eight healthy participants, although the difference in

accuracies was not statistically significant. Zander et al [7]
introduced a dry system developed by Brain Products that
only used three electrodes, but offline analysis revealed that a
statistically significant difference existed between the P300
classification accuracies of the dry and wet system recordings.
Grozea et al [8] introduced a novel dry system using bristle
sensors, but observed that statistically significant differences
exist between the wet and dry P300 signals for each partici-
pant. A study performed by Guger et al [9] compared P300
speller accuracies with the g.Sahara dry system to accuracies
obtained in a previous study [12] with a conventional wet
system. The subject pools were different for these two studies.
The wet system study [12] reported an average accuracy of
91.0%±18.5% across 81 subjects while the average accur-
acy in the dry system study [9] was 90.4%±17.2% across
23 subjects. Although no significant difference was observed
between the accuracies across subject pools for the two sys-
tems, intra-subject variation across the two subject pools may
have been a confounding factor.

The P300 speller typically collects multiple repetitions of
the EEG response and averages them to improve the SNR of
the P300 component. In the standard data collection
environment, the number of repetitions collected for the
average is held constant across participants and target char-
acters (termed ‘static’ data collection). All of the previous
‘wet versus dry’ studies mentioned [6–9] relied on static data
collection for which the amount of data collected was iden-
tical for the wet and dry systems. However, given the poorer
quality of the dry electrode recordings, these systems may
have benefited from additional data collection to improve the
SNR. In this study, we assess the potential for a data-driven
dynamic stopping algorithm to compensate for the lower SNR
of a dry system by automatically determining the amount of
data to collect online in both healthy participants and parti-
cipants with amyotrophic lateral sclerosis (ALS). Several
methods for adaptively controlling data collection have been
proposed in literature (e.g., [13–15]). However, these meth-
ods typically depend on some form of past performance of the
subjects. For example, Serby et al [13] and Lendhardt et al
[14] set a threshold for stopping data collection using aver-
aged training data across a subject pool, which may not
translate if the subject pool is changed. Throckmorton et al
[16] presented a probabilistic data collection algorithm that,
based on the quality of in-coming data, automatically deter-
mined the amount of data to collect on a character-by-char-
acter and subject-by-subject basis. If data were of poor
quality, additional data was collected to improve accuracy,
and if data were of high quality, data collection was reduced
to increase spelling speed. This algorithm resulted in sig-
nificant improvements in accuracy and spelling speed for
healthy participants. These results were validated in a study
with participants with ALS, one of the target populations for
P300 spellers [17].

The hypothesis for this study is that the dynamic stop-
ping algorithm will detect the need for additional data col-
lection with the dry system and collect sufficient data to
improve the BCI performance to wet system levels. Three
experiments are conducted. In the first experiment, P300
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speller performances with the g.Sahara dry system and a
conventional wet system are compared using static data col-
lection for healthy participants in order to assess differences
in performance for consistent amounts of collected data across
systems.

The second experiment applies the dynamic stopping
algorithm [16] to online data collection and the P300 speller
performances for healthy participants using wet and dry
systems are compared. This will assess the algorithm’s ability
to automatically compensate for any potential SNR differ-
ences between the two systems by increasing data collection
as needed. Finally, results with the dynamic stopping algo-
rithm are evaluated in participants with ALS. An analysis of
the differences in signal characteristics between EEG col-
lected with wet and dry systems was conducted to clarify the
observed performance results.

2. Methods

2.1. Participants and equipment

In the first experiment of this study, P300 speller data was
collected in the standard static data collection environment for
16 healthy participants at East Tennessee State University.
The second experiment used the dynamic stopping algorithm
[16] for online data collection for ten healthy participants at
Duke University. The third experiment recruited eleven par-
ticipants with communication disabilities (ALS=10,
PLS=1) to validate the results observed for the healthy
participants in the second experiment. Three participants with
ALS were dropped from the study due to vision loss or
caregiver unavailability. Details of the study participants with
communication disabilities used for data analysis can be
found in table 1. Participants in each experiment completed
two P300 speller sessions; one using a wet system and one
using a dry system. The two sessions were performed
between 1 and 54 d apart for the healthy participants and
between 1 and 95 d apart for the participants with commu-
nication disabilities. The electrode type used in the first ses-
sion was counter-balanced across participants. Participants
were asked to remove any HF-communication devices (e.g.,
mobile phones) that may interfere with the system and to
avoid any type of movement during both sessions. This is
imperative for dry electrode recordings, which may be more

sensitive to these types of interferences. P300 speller sessions
with healthy participants were performed in a laboratory
setting, while sessions with participants with disabilities were
performed in the Duke ALS clinic and participants’ homes.
All experiments were approved by either the East Tennessee
State University or Duke University IRB boards.

EEG signals were measured using electrodes positioned
according to the International 10–20 system and connected to
a computer via a 16-channel g.USBAMP biosignal amplifier.
The signals were sampled at 256 Hz. The dry electrode cap
utilized the g.Sahara active dry system, which is comprised of
8-pin golden alloy coated electrodes (7 mm pin length). The
wet electrode cap and electrolyte solution were purchased
from Electro-Cap International. A picture of each cap is
shown in figure 1. The dry electrode cap includes a chin strap
and the wet electrode cap does not. Three cap sizes (small,
medium, and large) were available for both electrode types.

Table 1. Demographic information of study participants with communication difficulties.

Participant number ALSFRS-R Experiment location Additional information

1 4 Clinic Movement via wheelchair, respirator-dependent, feeding tube
2 25 Home Movement via wheelchair
3 20 Home Movement via wheelchair
4 20 Home Ambulatory
5 46 Home Ambulatory
6 8 Home Movement via wheelchair, respirator-dependent, feeding tube
7 39 Home Ambulatory
8 41 Clinic Ambulatory

Figure 1. This figure shows the caps used for this study. The g.
Sahara dry electrode cap is shown for the (a) outside and (b) inside
of the cap. The Electro-cap International wet electrode cap is shown
for the (c) outside and (d) inside of the cap.
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Head circumference and the distance from the nasion to inion
were measured to determine an appropriate cap size that
provides gentle pressure for each participant. The caps were
pulled over the ears and were then connected to the amplifier.
Grounding bracelets were worn by both the experimenter and
the participant during dry electrode recording sessions to
avoid electrostatic charges. Eight electrodes (Fz, Cz, P3, Pz,
P4, P07, P08, and Oz), with ground and reference electrodes
attached to each mastoid, were used for data collection and
classification. Dry electrodes were turned back and forth a
few times to remove any hair between the electrode and the
skin, ensuring proper electrical contact. These electrodes have
been demonstrated to provide adequate information for P300
speller communication [18]. The BCI2000 software package
[19] was used for stimulus presentation and data collection,
with additional functionality added for the application of the
dynamic stopping algorithm [16].

2.2. P300 speller paradigm

Healthy participants were presented with a 9×8 grid of
characters on a computer screen while participants with
communication disabilities were presented with a 6×6 grid
of characters (see figure 2). These grids match the grids used
in Throckmorton et al [16] and Mainsah et al [17] for parti-
cipants without disability and with ALS, respectively. Both
grids were flashed based on the checkerboard paradigm to
eliminate character adjacency and double flash errors [20].
Each character stimulus was flashed twice in a sequence of 24
flashes. The flash duration was 62.5 ms followed by an inter-
stimulus interval of 62.5 ms, with an inter-target interval of
3.5 s. EEG signals were recorded for 800 ms following each
flash. The number of EEG signals collected for a given target
character differ between experiments and are detailed in the
following subsections.

2.3. Static data collection

Three calibration runs and three online test runs were recor-
ded for both the wet and dry system sessions in the static data
collection experiment. For each run, the participant was asked

to copy-spell a six-character token randomly drawn from a
subset of tokens from the English language. EEG response
signals to five sequences or 120 flashes (5 sequences×24
flashes/sequence=120 flashes) were collected for each tar-
get character presented to the participant. These data were
preprocessed and features were extracted for classification
according to Krusienski et al [18]. Stepwise linear dis-
criminate analysis (SWLDA) was performed on the calibra-
tion data to create the classifier weights for online testing.
Although several learning algorithms are known to ade-
quately classify P300 speller data, a statistical analysis of
several classifiers has indicated that the SWLDA classifier is
sufficient and the added complexity of nonlinear methods is
not necessary [21].

2.4. Dynamic data collection

Calibration runs for the dynamic data collection experiment
were gathered in a similar manner to static data collection.
However, due to the performance results of the static data
collection experiment, five calibration runs were collected
instead of three to improve the weights of the classifier. For
each calibration run, the participant was asked to copy-spell a
six-character token from the English language. EEG response
signals to seven sequences or 168 flashes (7 sequences×24
flashes/sequence=168 flashes) were collected for each
character. The preprocessing techniques, feature extraction
and classification method were identical to the static
experiment.

Five online test runs were collected with the dynamic
stopping algorithm [16] applied. Instead of having a pre-set
number of flash sequences for data collection, the dynamic
stopping algorithm automatically determined the necessary
amount of data to collect for each target character. The
amount of data collected was controlled by a threshold (90%)
on the probability that each character in the grid was the target
character *c .( ) The initial probability of each character being
the target was set to 1/N (where N is the total number of
characters in the grid), i.e., no a priori knowledge was
assumed. For each new response signal xj( ) obtained after a
character group flash (Sj contains the characters in the group),

Figure 2. Screen captures of the character grid used for healthy participants (left) and participants with ALS (right).
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a classifier score ( *= w xy ,jj where w represents the classifier
weights) was calculated and stored in = ¼ -Y y y y, , .j j j1 1,[ ]
The probability for each character cn( ) in group Sj was
updated using the likelihood estimates from the training data
(obtained from the probability density functions for the target,
p y H ,i 1( ∣ ) and non-target, p y H ,i 0( ∣ ) response signals). The
update equation is based on Bayes rule and implemented as in
equation (1), where *= Y SP c c ,j jn( ∣ ) is the posterior prob-
ability of a character cn being the target character,

*= SP y c c , jj i( ∣ ) is the likelihood of the classifier response
given that ci was/was not in group Sj and

*= - -Y SP c c ,j ji 1 1( ∣ ) is the prior probability of a character
ci being the target character.
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Character probabilities were updated after each response to a
flash group was collected. Data collection stopped once one
of the character probabilities in the grid exceeded 90%.

3. Results

Figure 3 plots the spelling accuracy and bit rate (related to
spelling speed), respectively, for each participant using the
dry system (circle) and wet system (triangle) in the static data
collection experiment. Accuracy is defined as the percentage
of characters spelled correctly in a copy-spelling session.
Assuming a binomial distribution on the probability of cor-
rectly selecting a set of characters [22], chance level accuracy
was 11.1% for this experiment. Bit rate is a measure of
communication systems that incorporates accuracy, speed,
and the number of selectable characters presented and is
calculated in bits min−1 [23].

The results in figure 3 illustrate the impact of the lower
SNR resulting from the dry system. Twelve out of the sixteen
participants performed worse with the dry system when
compared to the wet system. The average spelling accuracy
and bit rate for the wet and dry systems are listed in table 2.
Two Wilcoxon signed-rank tests were performed to compare
the participants’ accuracy and bit rate with dry and wet sys-
tems and the differences were statistically significant
(p=0.0007 and p=0.0006, respectively). This implies that

dry systems may benefit from additional data collection to
improve the SNR.

The results for the dynamic data collection experiment
are shown in figure 4 and the average spelling accuracy and
bit rate for both systems are listed in table 3. Chance level
accuracy for this experiment was 10.0%. With dynamic data
collection, the differences in accuracy between wet and dry
systems were small (<13%) for the majority of subjects (see
figure 4(a)). However, the differences in accuracy and bit rate
were still statistically significant (p=0.025 and p=0.002,
respectively) using Wilcoxon signed-rank tests. Although the
average performance with dry electrodes remains lower than
performance with wet electrodes despite using dynamic col-
lection, the differences in BCI performance between wet and
dry systems appear smaller than those observed using static
data collection. In order to compare the static results to the
dynamic results across the two subject pools, a subset of
participants were selected from the static data collection
experiment based on their wet system performance. Eleven
participants in the static data collection experiment had wet
system spelling accuracies above 80%, similar to the ten
participants in the dynamic data collection study. The average
accuracy for this subset of participants with the wet system
was 95.5%, similar to the 94.3% average accuracy observed
for the dynamic data collection participants. However, the
average dry system accuracy for these participants was
61.6%; still much lower than the 79% average accuracy
observed in the dynamic data collection experiment, sug-
gesting that dynamic data collection may mitigate some of the
lost performance with dry electrodes.

As hypothesized, the dynamic stopping algorithm
increased the amount of data collected for the dry system
across all subjects (see figure 4(c)), indicating that the algo-
rithm can detect and respond to the need for additional data
collection in low SNR scenarios. However, collecting more

Figure 3. This figure shows the results for the static data collection experiment performance comparison of wet (triangles) and dry (circles)
electrode systems for sixteen healthy participants. The x-axis represents the participants in this study and the y-axis represents the results for
(a) spelling accuracy, in percent correct, and (b) bit rate, in bits min−1.

Table 2. Static data collection performance averages.

Average
accuracy (%)

Average bit rate
(bits min−1)

Dry system 42.8 7.3
Wet system 72.8 13.6
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data did not increase the performance of the dry systems to
the same level of performance as the wet systems.

The question of whether the raw data from the two
electrode types looked similar was also addressed. In figure 5,
P300 latency and amplitude values were compared for signals
measured over the electrode location Cz in the dynamic data
collection study. These values were selected by taking the
maximum from a window of the grand average between
0.2–0.4 s. The grand averages include P300 signals from both
the training and testing stages; therefore, more data were
averaged for the dry grand averages than the wet grand
averages (see figure 4(c)). The average P300 latency for the
wet and dry systems were 0.262 s±0.031 and 0.263
s±0.032, respectively, and the differences between systems
were not statistically significant (p=0.688). However, the
differences in P300 amplitude were statistically significant
(p=0.027). The average dry system amplitude (2.55

μV±1.14) was lower than the wet system amplitude (3.29
μV±1.65), which may indicate that techniques other than
additional data collection may be needed to improve the SNR
of the dry system.

The results for healthy participants in the dynamic data
collection experiment were confirmed for participants with
communication disabilities (see figure 6 and table 4). Once
again, the differences in accuracy and bit rate were statisti-
cally significant (p=0.008 and p=0.008, respectively) and
the amount of data collected increased across all participants
for the dry system. This further implies that the dynamic
stopping algorithm improves the SNR of the dry system by
collecting more data, but performance is still degraded when
compared to the wet system. Improvements, either in signal
processing or in hardware design, may be required to bring
dry systems to the same level of performance as wet systems.

Participants with communication disabilities were also
given a short survey after both the wet and dry system ses-
sions. The survey consisted of six statements and the parti-
cipants were asked to rate each statement with a number
between one (strongly disagree) and seven (strongly agree).
The average responses are shown in table 5. These averages
suggest that while the participants agree that the setup of the
dry system was quick and not agitating, they also found the
dry system to be slow and uncomfortable. However, the

Figure 4. This figure shows the results for the dynamic data collection experiment performance comparison of wet (triangles) and dry (circles)
electrode systems for healthy participants. The x-axis represents the participants in this study and the y-axis represents the results for (a)
spelling accuracy, in percent correct, and (b) bit rate, in bits min−1, and (c) total number of flashes collected.

Table 3. Dynamic data collection (healthy participants) performance
averages.

Average
accuracy (%)

Average bit rate
(bits min−1)

Average #
flashes

Dry system 79.0 17.9 3915
Wet system 94.3 38.7 1615

Figure 5. This figure shows the latency and amplitude values for the grand average P300 signals over electrode location Cz in the dynamic
data collection experiment. The x-axis represents the healthy participants in this study and the y-axis represents the P300 values for (a)
latency, in seconds, and (b) amplitude, in microvolts.
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differences between the wet and dry system responses for
each statement were not statistically significant.

In order to determine the types of signal processing most
likely to be beneficial for improving the performance of dry
systems, the difference(s) between wet and dry electrode
recordings need to be characterized. In a wet system, the
conductive gel serves as buffer to bridge the gaps between the
skin and the electrode as a participant moves during a
recording session. Without this conductive gel, dry systems
may be more sensitive to artefacts from movement. Therefore,
one potential difference between data collected with the two
systems may be the number of motion artefacts recorded.

Motion artefacts create large potentials that are super-
imposed onto neural signals and are known to impact the
frequency content of EEG recordings [24]. These artefacts
can have amplitudes of several millivolts and often have
energy in the same frequency range as EEG events, such as
the P300 component. To determine whether an increase in
spectral amplitude occurred for the dry system in our
experiments, the power spectral density (PSD) estimates were
examined for each participant’s continuous dry and wet
electrode recordings. Figure 7 displays the dry and wet PSD
results for a single electrode channel, Cz, in the dynamic data

collection experiments with healthy participants (figures 7(a)
and (b)) and participants with communication disabilities
(figures 7(c) and (d)). Estimates below 3 dB and above 30 dB
were clipped for visualization purposes. The PSD results
displayed in figure 7 indicate that low-frequency noise may be
higher in dry electrode recordings when compared to wet
electrode recordings.

The difference in frequency content between data col-
lected with the wet and dry systems was further analyzed by
examining four frequency band powers: (1) delta (0.1–4 Hz),
(2) theta (4–8 Hz), (3) alpha (8–13 Hz), and (4) beta (13–30
Hz). Delta and theta band power were repeatedly higher in the
continuous dry electrode recordings than wet electrode
recordings. A statistical analysis of the wet and dry power
bands across all participants, using Wilcoxon signed-rank
tests, demonstrated that these differences in delta and theta
band power between the two systems were significant for 8
out of the 8 electrode channels (p<0.05). The alpha band
power differences were significant for seven channels, while
the differences for the beta band power were significant for
three channels. This indicates that as frequency decreases, the
differences between wet and dry system recordings increases
across channels. A spectral analysis of all eight electrode
channels demonstrated that the low-frequency power is gen-
erally higher for the dry system recordings, which suggests
that low-frequency artefact noise may be negatively impact-
ing dry system performance given that the P300 component
also lies in this frequency band [25–27].

To measure possible artefact noise, two techniques that
have been well-studied in seizure detection literature (e.g.,
[28–33]) were used to detect large transient voltages in P300
speller EEG recordings between characters (when characters

Figure 6. This figure shows the results for the dynamic data collection experiment performance comparison of wet (triangles) and dry (circles)
electrode systems for participants with communication disabilities. The x-axis represents the participants in this study and the y-axis
represents the results for (a) spelling accuracy, in percent correct, and (b) bit rate, in bits per minute, and (c) total number of flashes collected.

Table 4. Dynamic data collection (ALS/PLS participants)
performance averages.

Average acc-
uracy (%)

Average bit rate
(bits min−1)

Average #
flashes

Dry system 50.9 8.9 3604
Wet system 87.9 32.5 1278

Table 5. Survey results for participants with communication difficulties.

Statement (1= Strongly disagree, 7= Strongly agree) Wet (Average) Dry (Average)

(1) The time required to setup the cap was reasonable 5.70 (±2.20) 6.50 (±0.79)
(2) The setup of the cap was frustrating/agitating 2.28 (±1.89) 1.00 (±0.00)
(3) I found the cap comfortable 5.42 (±1.81) 4.00 (±1.95)
(4) I could see myself wear this cap for more than two hours at a time 5.00 (±2.08) 2.50 (±2.07)
(5) The speed and accuracy of the system was acceptable 5.71 (±1.11) 3.25 (±2.70)
(6) If this is my primary method of controlling a computer I would use it daily 5.14 (±2.27) 2.75 (±1.98)
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were not flashing, eliminating the possibility of inadvertently
detecting ERPs). The first technique used an autoregressive
model of order 7 on the inter-target intervals of the EEG data
(3.5 second segments), where the model coefficients were
estimated with the Yule Walker equations. Assuming tran-
sient artefacts are non-stationary phenomena, the model
detected large peaks in error (exceeding a given threshold)
when artefacts may have occurred. The mean number of

artefacts detected for a set of thresholds were averaged across
the participants in each experiment and the results are dis-
played in figure 8. Although the differences between the
number of possible artefacts detected with the wet and dry
systems for healthy participants seem small (figures 8(a) and
(b)), two Wilcoxon sign-ranked test revealed that statistically
significant differences exist (p<0.001 for both the static and
dynamic experiments). The second technique used wavelet

Figure 7. This figure displays the power spectral density estimates for continuous P300 speller EEG data. The estimates are shown for ten
healthy participants using the (a) dry system and (b) wet system and eight participants with communication disabilities using the (c) dry
system and (d) wet system. The y-axis denotes the participant and the x-axis denotes frequency (in Hz). The color axis displays the power (in
dB), where the values are mapped to a color according to the color bar on the right (e.g., power values �30 dB are shown in solid white and
values �3 dB are shown in solid black).

Figure 8. These plots show the results for possible artefact detection using an autoregressive model. The results were averaged across
participants in (a) the healthy static data collection experiment, (b) the healthy dynamic data collection experiment and (c) the ALS dynamic
data collection experiment. Each plot displays the number of possible artefacts detected (y-axis) for a threshold (x-axis) in the dry electrode
recordings (circles) and the wet electrode recordings (triangles).
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analysis with a Daubechies-4 mother wavelet [31]. Peaks in
the low-frequency wavelet approximation coefficients above a
certain threshold were measured as artefacts. The results were
averaged across the participants in each experiment and are
shown in figure 9. Once again, the differences in the number
of possible artefacts detected with the wet and dry systems for
healthy participants seem small (figures 9(a) and (b)), but are
indeed statistically significant (p<0.001 for both the static
and dynamic experiments). The results in figures 8 and 9
show that for thresholds above 30–40 μV, both techniques
detected a larger number of possible artefacts in the dry
electrode recordings when compared to the wet electrode
recordings. The results for participants with communication
disabilities (figures 8(c) and 9(c)) reveal much larger differ-
ences between the number of possible artefacts detected for
the wet and dry systems. Given that these experiments were
performed either in the participant’s home or a clinical setting
(as opposed to the healthy participants who performed
experiments in a laboratory setting), the larger differences
may be due to an increase in environmental noise that dry
electrodes, with their high impedance levels, may be more
sensitive to such as artefacts from external devices or elec-
trostatic charges. These results suggest that there may be a
benefit to applying signal processing approaches that target
low-frequency noise without attenuating low-frequency ERPs
such as the P300 component.

4. Discussion

While some previous studies have suggested that dry elec-
trode recordings are comparable to wet electrode recordings
for P300-based BCI applications, our performance results
suggest that dry electrodes produce lower SNRs in the
recorded responses, which negatively impacts classification
accuracy and reduces their potential utility for a home-based
communication aid. Using a data-driven dynamic stopping
algorithm compensates for the additional noise by collecting
more data, but performance is still reduced when compared to
signals recorded with the wet electrodes. Although a variety
of commercially available contact dry electrode systems exist
(e.g., systems designed by Cognionics, Brain Products,

Emotiv and Wearable Sensing), the results presented in this
study would likely translate to these systems since the issue of
poor skin-to-electrode contact remains. However, certain
design criteria might reduce some of the artefact noise. A
wireless dry system that limits cable movement might have
been beneficial for ambulatory participants in this study.
Flexible dry electrodes that conform to the scalp could have
helped provide the right amount of contact pressure for
individual sensors, minimizing participant discomfort and
possibly reducing motion artefact noise in cases where the cap
was ill-fitted. While testing with additional systems would
provide validation of the results, without skin abrasion or a
conductive gel to create a stable, low impedance path between
the skin and the electrode, dry electrodes are likely to be more
susceptible to skin potentials and motion artefacts.

Motion artefacts have a wide frequency range, which is
maximal at 30 Hz [24]. An analysis of the recorded EEG
signal characteristics revealed that the delta and theta fre-
quency band power (0.1 Hz–4 Hz and 4 Hz–8 Hz, respec-
tively) are consistently higher in dry electrode recordings
across participants. Two transient artefact detection techni-
ques (autoregressive modeling and wavelet analysis) revealed
an increased number of possible skin and motion artefacts for
the dry system when compared to the wet system, suggesting
that both transient and slow artefacts may be contributing to
the lower SNRs in dry systems, potentially resulting in
decreased system performance.

Thus a potential future approach to make dry electrodes
in P300-based BCI systems feasible as a home-based com-
munication aid may be to develop methods to mitigate the
effects of excessive low-frequency noise. While several
artefact removal techniques exist, their application in BCI is
limited because they may attenuate the desired signal (e.g.,
linear filtering [34]), require a priori knowledge of the
desired/artefact signal (e.g., adaptive filtering [34]), not
detect small amplitude artefacts (e.g., thresholding [35]) or
require that the artefact and desired signal are minimally
correlated or maximally independent (e.g., blind source
separation [35]). However, it may be possible to use machine
learning to separate undesirable artefacts from ERP responses
and thereby improve ERP-based BCI performance with dry
electrodes. The current standard learning algorithm operates

Figure 9. This figure shows the results for possible artifact detection using wavelet analysis. The results were averaged across participants in
(a) the healthy static data collection experiment, (b) the healthy dynamic data collection experiment and (c) the ALS dynamic data collection
experiment. Each plot displays the number of possible artifacts detected (y-axis) for a threshold (x-axis) in the dry electrode recordings
(circles) and the wet electrode recordings (triangles).
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under the assumption that an increase in energy only occurs
for an appropriate stimulus, ignoring voltages that can origi-
nate from the user’s physical activity or external movements
in the surrounding environment. Dry electrodes, with their
higher contact impedance, may be particularly sensitive to
these types of artefact interference. Therefore, an additional
classification stage could be developed that separates detected
artefacts into two classes, ERP responses and artefacts. The
exploration of features beyond spatiotemporal characteristics,
such as statistical moments and PSD estimates, may help
increase artefact classification performance. Unsupervised
learning techniques could also facilitate further discrimination
between different types of artefacts, leading to improved
artefact detection methods. The focus of future work will be
on incorporating artefact separation into the dynamic stopping
algorithm to reduce the system’s response to false energy
responses and produce a more accurate learning algorithm in
dry electrode systems.

5. Conclusion

Using a dry electrode cap with the P300 speller would greatly
reduce the complexity and time it takes to set up the system,
creating a more practical home-based communication aid for
locked-in patients. In the static data collection environment,
performance was shown to drop in dry systems, and our
results suggest that collecting more data does not fully com-
pensate for the lower SNR when compared to wet systems.
Higher low-frequency power and an increased number of
large voltage peaks in the dry electrode recordings suggest
that transient artefacts may be an issue. To further improve
the performance of dry electrodes, a process to mitigate the
effects of low-frequency artefact noise may need to be
developed.
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