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Abstract

P300 spellers can provide a means of communication for individuals with severe neuromuscular 

limitations. However, its use as an effective communication tool is reliant on high P300 

classification accuracies (>70%) to account for error revisions. Error-related potentials (ErrP), 

which are changes in EEG potentials when a person is aware of or perceives erroneous behavior or 

feedback, have been proposed as inputs to drive corrective mechanisms that veto erroneous actions 

by BCI systems. The goal of this study is to demonstrate that training an additional ErrP classifier 

for a P300 speller is not necessary, as we hypothesize that error information is encoded in the P300 

classifier responses used for character selection. We perform offline simulations of P300 spelling 

to compare ErrP and non-ErrP based corrective algorithms. A simple dictionary correction based 

on string matching and word frequency significantly improved accuracy (35–185%), in contrast to 

an ErrP-based method that flagged, deleted and replaced erroneous characters (−47 – 0%). 

Providing additional information about the likelihood of characters to a dictionary-based 

correction further improves accuracy. Our Bayesian dictionary-based correction algorithm that 

utilizes P300 classifier confidences performed comparably (44–416%) to an oracle ErrP 

dictionary-based method that assumed perfect ErrP classification (43–433%).
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I. Introduction

The P300 speller is a brain–computer interface (BCI) that exploits event-related potentials 

(ERP) in electroencephalography (EEG) data to enable users to control a word processing 

program [1]. It has been recommended that P300 classification rates perform with accuracies 

greater than 70% for effective communication [2], as spelling correction requires at least two 

selective actions: correctly selecting backspace and reselecting the intended character. 

Alternatively, system usability can be improved if erroneously spelled characters can be 

automatically detected and deleted without further user action, saving the time needed to 

select a backspace command.

One method that has been proposed for actively detecting errors is to detect error-related 

potentials. Error-related potentials (ErrP) are changes in the EEG potentials after a person 

becomes aware of or perceives erroneous behavior [3]. ErrP detection has been suggested as 

input to drive corrective mechanisms that veto erroneous actions by BCIs. However, the 

limited online studies with ErrP-driven corrective mechanisms in P300 spellers have 

produced mixed results [4]–[7].

A common complaint with training ErrP classifiers for P300 spellers is the long time 

required to obtain enough ErrP classifier training data. For example, using a paradigm such 

as that proposed by Townsend et al. [8] that presents 24 flashes/sequence, a typical amount 

of data collection of five sequences/character would result in 120 labeled samples with 

which to train the P300 classifier using data from a single selected character. On the other 

hand, presenting that selected character only yields one labeled sample for ErrP classifier 

training. The lack of adequate training data can negatively affect the potential benefit of 

using ErrP detection for automatic error deletion since efficacy depends on the accuracy of 

detection. Further, single trial ERP detection (i.e., the user's response to a single erroneous 

character) within noisy EEG data can be challenging due to the low signal-to-noise ratio of 

ERPs. Average online detection performance of ErrP classifiers for automatic character 

deletion in P300 spellers has ranged from 60–90% accuracy, with 40–60% sensitivity (hit 

rate) and 80–90% specificity [4]–[7].

In this study, we consider whether an alternative approach that does not rely on detecting 

ErrPs has the potential to provide similar or better error correction. The positional context of 

erroneous characters can be used to infer the user's intended word from a dictionary of 

words via string matching [9]. String matching searches for the words that match the 

misspelled word within a certain number of edits (termed edit distance), e.g., tar would 

match txr with one edit, the substitution of x with a. In addition, the cumulative P300 

classifier outputs prior to character selection contain some information about the likelihood 

of possible letters being the target at each position in the word [8], [10]. This uneven 

distribution of character classifier outputs is useful when more than one word match is 

obtained from a dictionary after string matching e.g., [11].

Fig. 1 shows two example probability distributions of alphabet characters post-data 

collection for the word DRIVING, obtained by using EEG data from P300 speller sessions 

of two different participants to simulate spelling, yielding the words: -JI,S-G and -R-VING. 
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The 9 × 8 Townsend et al. P300 speller grid [8] used in this study consists of alphanumeric 

characters and 36 additional command/grammar options e.g.“Del,” “Home.” The command 

options were disabled for the spelling sessions, and if selected, were represented by a 

hyphen. Attempting to correct misspellings from string matching alone would be difficult, 

since there are several matches that can be obtained within the same edit distance e.g., 

CRAVING, DRIVING, PROVING etc., for -R-VING. As the number of errors increases, 

e.g., -JI,S-G, the number of possible matches can increase. Therefore, a method of choosing 

from alternative words is required. A common method is word frequency. In this study, we 

also consider using the probability of each character being the target character. As can be 

observed in Fig. 1, while the target character may not have the highest probability, often one 

of the next most probable characters is the target. Thus, the character probabilities can be 

used to weight characters in word choices when performing spelling correction, e.g., in the 

first position of both distributions, D has the highest alphabet probability.

We hypothesize that training an additional ErrP classifier to flag erroneous characters is not 

needed, since as shown above, some error information is encoded in the cumulative P300 

classifier responses. In this study, we compare the performance of spelling correction with 

ErrP and non-ErrP based corrective algorithms. We perform offline analyses to compare the 

improvement in accuracy from the raw P300 speller character selections using various 

corrective algorithms.

II. Methods

A. EEG Dataset

The dataset was obtained at East Tennessee State University for a study approved by the 

university's Institutional Review Board. Participants were numbered in the order they were 

recruited (n = 19). The open source BCI2000 software package was used for stimulus 

presentation and data collection [12]. The checkerboard paradigm was used on a 9 × 8 grid 

[8]. EEG responses were measured using a 32-channel electrode cap, with the left and right 

mastoids used for ground and reference electrodes, respectively. The EEG signals were 

amplified, digitized at 256 Hz, and filtered between 0.5–30 Hz.

Participants underwent two P300 speller sessions: a first session to collect data to train a 

P300 classifier and a second to collect data to train an ErrP classifier. During the first 

session, participants spelled four five-letter words with five sequences/character (two target 

flashes out of 24 flashes/sequence). During the second session, the trained P300 classifier 

was not used online. Participants spelled 15 phrases of 20 characters, each with fake 

feedback presented at an error rate of 20%. To speed up data collection for the ErrP 

classifier, only one sequence/character was used prior to presenting the fake feedback. 

Offline signal analysis and spelling correction were performed using MATLAB software 

(The MathWorks, Inc.).

B. Signal Analysis and Classification

1) P300 Classification—Using the EEG data from the first session, features were 

extracted to train a stepwise linear discriminant analysis (SWLDA) classifier [13]. The 
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likelihood probability density functions (pdf), p(x|H0) and p(x|H1), of target and nontarget 

scores, respectively, were generated by using kernel density estimation to smooth out the 

histogram of the grouped scores, and the p(x|H0) and p(x|H1) pdfs were used in the Bayesian 

spelling correction algorithm.

2) ErrP Classification—Using the EEG data post-character feedback from the second 

training session, features were extracted to train a linear discriminant analysis (LDA) 

classifier, with shrinkage [14], with leave-one-word-out cross-validation. The likelihood 

pdfs, p(s|Hc) and p(s|He), of correct and erroneous character scores, respectively, were 

generated by using kernel density estimation to smooth out the histograms of the grouped 

scores. The p(s|Hc) and p(s|He) pdfs were used in the ErrP classifier spelling correction 

algorithms.

C. P300 Spelling and ErrP Classifier Simulation

The P300 classifier trained from the first spelling session data was applied to the EEG data 

of the second session to simulate P300 spelling. In the example in Fig. 2, a user intends to 

spell the word C = (c1, c2, …, cT). For a spelled word, W = (w1, w2, …, wT), the selected 

character, wt, was the character with the maximum cumulative P300 classifier score. The 

P300 classifier also outputs a N × T matrix, which can be the cumulative classifier score 

rankings or probabilities of grid characters prior to character selection. Each column in the 

matrix, t, corresponds to labeled entries of the N characters in the grid for the tth spelled 

character. Examples of  matrices are shown in Fig. 1.

If applicable, the trained ErrP classifier was applied to features extracted from a time 

window of EEG data after the feedback was presented to the user. The ErrP classifier returns 

a score vector,  = [s1, s2, …, sT], which was used to calculate the ErrP classifier 

confidences, Π = [π1, π2, …, πT]

(1)

where πt is the confidence that the selected character, wt, is correct; p(st|Hc) and p(st|He) are 

the likelihoods that the ErrP classifier score, st, is generated from a correct character and 

incorrect character (hence ErrP elicited), respectively; Apr is the projected accuracy 

calculated from the P300 training data of the first session, according to Colwell et al. [15].

D. Spelling Correction

For the spelled word, W, a set of possible word choices and their corresponding unigram 

probabilities,  = {(D1, P(D1)), (D2, P(D2)), …, (DJ, P(DJ))}, was generated from a 

dictionary and used to estimate the word the user intended to spell, C (see Fig. 2). The 

dictionary vocabulary (≈30000 words) was created from a modified corpus compiled by 

Norvig [16] and the frequency count of words were smoothed to obtain word unigram 

probabilities. The word choices were limited to words of the same length with minimum 

Levenshtein edit distance from the spelled word. Their unigram probabilities, P(Dj), 
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provided an estimate of the prior probability of being the user's intended word. The 

Levenshtein distance is the minimum number of single-character edits, insertions, deletions 

and substitutions, needed to convert one string to another [17].

For some algorithms, a noisy channel model was used for spelling correction [18], [19]

(2)

(3)

where P(Dj|W, /Π) is the posterior probability of the word choice, Dj, given the spelled 

word, W and  matrix from the P300 classifier or Π vector from the ErrP classifier; and 

P(W|Dj, /Π) is the likelihood of the spelled word given the word choice, Dj, and /Π.

Three non-ErrP-based detection methods were compared to three ErrP-based detection 

methods. The non-ErrP detection based methods consisted of a dictionary look-up with 

different word selection methods: word frequency; a method proposed by Ahi et al. for word 

ranking [11]; and a Bayesian method based on the P300 classifier character probabilities 

(methods 1–3). The ErrP detection based methods include: an oracle method in which 

perfect ErrP detection was assumed; a method proposed by Perrin et al. for using ErrP 

detection for error correction [6]; and a method for which the ErrP detection classifier 

confidences are used in the noisy channel model (methods 4–6).

1) Simple Dictionary—The word with the highest unigram probability in , was selected 

as the target word estimate

(4)

2) Ahi et al. 2011—The classifier scores were used to rank each word choice to obtain an 

estimate of the user's intended word [11]. The word with the minimum cost was selected as 

the target word estimate

(5)

(6)
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where  is the tth letter of the word Dj,  is the grid label for  and  is the rank 

of the classifier score of , obtained from the tth column of the  matrix, t. The  matrix 

for this algorithm consists of the cumulative P300 classifier score rankings of characters in 

the spelled word.

3) Bayesian—The cumulative character scores were not used for character selection. 

Instead, each character was assigned a uniform prior probability of being the target and a 

Bayesian approach was used to update the character probabilities with each EEG flash data 

[20]. The character with the maximum probability at the end of the Bayesian updates was 

selected as the user's intended choice, wt. The column entries in the  matrix thus consisted 

of the final Bayesian character probabilities. The noisy channel model (2), (3) was used for 

spelling correction to estimate the user's intended word

(7)

where  is the Bayesian character probability of , obtained from the tth column of 

the  matrix, t.

4) Oracle ErrP Classifier—The oracle ErrP classifier was used to infer the upper bound 

on the performance of spelling correction with perfect ErrP classification, i.e., returns “0” 

for correctly spelled characters and “1” for erroneous characters. The set of words in  was 

narrowed to words with substitutions only at erroneous character locations. The word with 

the highest unigram probability in  was selected as the target word estimate, according to 

(4).

5) Perrin et al. 2012—The ErrP classifier confidences, Π, were compared against the 

projected accuracy, Apr [15], calculated from the EEG data of the first P300 speller session. 

If an ErrP classifier confidence, πt, was less than the projected accuracy, Apr, character wt 

was substituted with the character that had the 2nd P300 classifier score rank in t [6].

6) ErrP Classifier—The noisy channel model (2), (3) was used for spelling correction to 

estimate the user's intended word and was based on the ErrP confidences

(8)

where  is the Kronecker delta, where δ = 1 when , and δ = 0 when ; πt 

is the ErrP classifier confidence; and (1 − πt)/(N − 1) is the remaining ErrP classifier 

confidence that is evenly distributed across the remaining N − 1 characters in the grid.
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E. Performance Measures

The character and word accuracies for the P300 speller simulation, with and without the 

spelling correcton algorithms were calculated for each participant. Statistical significance 

was tested using a repeated measures ANOVA.

III. Results

The character and word accuracies for the raw P300 speller and with spelling correction 

were calculated. Fig. 3(A) and (B) shows pooled participant results. Statistical analyses for 

character and word accuracy revealed a significant difference in the means of at least two 

algorithms (p < 0.05), and pairwise comparisons are shown in Tables I and II. The 

performance percentage improvements reported are with respect to the raw P300 speller 

character accuracy. Participant-specific results are shown in Fig. 3(C), ordered according to 

raw P300 speller character accuracy (also see Tables III and IV).

Fig. 3(A) compares character-based correction with the ErrP classifier to word-based 

correction with a simple dictionary correction. It can be observed that correcting whole 

words with errors is more beneficial as it utilizes the positional context of errors to generate 

word alternatives. Even with just one sequence of data prior to character selection, a simple 

dictionary correction was able to yield a significant increase in participant accuracy, with 

35–185% improvement in character accuracy.

Successfully deleting and replacing erroneous characters that are flagged by an ErrP 

classifier, as in Perrin et al., requires high discriminability by the ErrP classifier. At these 

ErrP detection performances, utilizing the Perrin et al. method negatively impacted 

participant accuracy, ranging from −47 to 0% decrease in character accuracy. It is possible 

that the Perrin et al. correction method was adversely affected by the limited amount of data 

collection prior to character selection, as more data could have led to sparser character 

distributions where likely and unlikely characters are better separated. However, there is no 

guarantee that if the ErrP classifier correctly flags and deletes an erroneous character, 

substitution with the next most probable character will correspond with the target. 

Nonetheless, these results highlight the benefit of including language information, especially 

under the challenging condition of limited training data.

Fig. 3(B) shows the potential benefit of adding information about the confidence in each 

character to the language-based error correction of the simple dictionary search. The ErrP 

classifier correction method (35–190%) is comparable to a simple dictionary correction, 

suggesting no additional benefit in attempting to correct errors at these ErrP detection 

accuracies. However, with perfect ErrP detection, a significant benefit occurs (43–433%), 

suggesting that the knowledge of incorrect characters can be beneficial to word correction. 

Relying on cumulative P300 classifier score rankings of letters to rank words, as in Ahi et 
al., has some benefit to word correction (37–416%); however, the Bayesian approach that 

uses a noisy channel model further improves performance (44–416%). Furthermore, 

performance with the noisy channel model with Bayesian character probabilities is similar to 

that with perfect ErrP detection. This suggests that training an additional ErrP classifier to 

flag erroneous characters in the P300 speller may not be necessary as spelling correction can 
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be achieved with a dictionary by utilizing the error information that is encoded in the P300 

classifier responses.

IV. Discussion

ErrP detection requires the collection of a substantial amount of training data in order to be 

accurate, and the accuracy of the detection drives the efficacy of corrective mechanisms 

based on ErrPs. The difference between the accuracies of the trained ErrP-based correction 

method and the oracle ErrP-based correction method was statistically significant, both for 

characters (difference of approximately 25 characters correct) and words (difference of 

approximately four words correct). This suggests that additional training data would be 

required to achieve the full potential of the ErrP detection-based correction method. 

However, by relying on language information and BCI outputs, equivalent performance to 

the oracle ErrP-based correction method was achieved without the requirement for 

additional training data. Thus, the Bayesian correction method has the potential to improve 

accuracy at a much reduced cost in time and effort.

The Bayesian correction algorithm has the further advantage of being applicable to other 

ERP-based spelling BCIs with probabilistic data collection algorithms and it can be 

incorporated within any probabilistic-based spelling correction algorithm. Spell-checking 

and correction algorithms have been widely studied for other applications and can be 

exploited for BCI spelling applications [21]. For example, while we used unigram word 

probabilities, additional context within sentences can be provided via higher order n-gram 

language models for context-based spelling correction, especially for detecting and 

correcting real-word errors.

While an online implementation was beyond the scope of this study, the oracle ErrP-based 

correction algorithm provided an estimation of the upper bound on an ErrP-based system. In 

this offline analysis, the Bayesian correction method achieved similar performance to the 

upper bound, suggesting the potential for correction without ErrP detection. However, the 

Bayesian spelling algorithm requires further development prior to on-line BCI spelling 

applications. The performance of dictionary-based correction is dependent on the language 

models developed from a compiled corpus. A user-specific body of text can provide more 

language context and it can be updated and smoothed periodically to handle out-of-

vocabulary words. Another issue is the detection of word boundaries/white space prior to 

performing spelling correction. Most P300 speller studies design their spelling tasks with 

single words and in this study, we extracted words from phrases, hence the target word 

length is known a priori. In addition, dictionary-based spelling correction is not applicable to 

numbers or command options in the speller grid. Natural language processing tools like 

word segmentation/ tokenization [22] or techniques from optical character recognition [23] 

can be exploited to further improve the performance of BCI spellers for more practical use 

for the target BCI population.
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V. Conclusion

This study demonstrates that spelling correction can be achieved in BCI spellers without the 

large costs in data and time associated with ErrP-driven corrective mechanisms. Instead, a 

new spelling correction algorithm is developed, the noisy channel model with Bayesian 

character probabilities, which combines probabilistic P300 classifier information and 

dictionary-based suggestions to achieve a significant increase in character/word accuracy 

(44–416%) from the raw P300 speller outputs. This algorithm achieves comparable 

performance to an ErrP-based correction method for which perfect ErrP detection is 

assumed (43–433%), suggesting that the Bayesian method may provide a more reliable 

approach to spelling correction than developing an ErrP-based classifier.
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Fig. 1. 
Distribution of character probabilities post-data collection for the word DRIVING, 

simulated from EEG data from two P300 speller sessions. The x-axis labels show the 

characters selected by the P300 speller, yielding words, -JI,S-G (left) and -R-VING (right), 

with the corresponding probabilities of alphabet characters (columns). Ideally, the character 

with the highest probability should correspond to the target, e.g., most characters in 

distribution 2. For erroneous characters in both distributions, target characters are usually 

among those with the next highest probabilities. Probability values are clipped for 

visualization purposes and non-alphabetic grid characters are not displayed.
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Fig. 2. 
Flowchart for proposed spelling correction in the P300 speller. A user intends to spell the 

word C. Using a trained P300 classifier and EEG data, the P300 speller outputs the spelled 

word, W, and a matrix of character P300 classifier score rankings or probabilities, N × T, (N 
= number of grid characters, T = length of the spelled word). In the dictionary unit, a list of 

probable words, , based on a string metric function is generated from a vocabulary, with 

the corresponding prior probabilities, (Dj, P(Dj)), obtained from a text corpus. If an ErrP 

classifier is used, after character selection feedback is presented to the user, the ErrP 

classifier computes classifier scores, 1 × T, which are used to calculate the ErrP classifier 

confidences, Π1 × T. Using the word prior probabilities, P(Dj), the  matrix or Π vector, the 

user's intended word choice, Ĉ, is estimated.
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Fig. 3. 
Character and word accuracies for the raw P300 speller outputs and spelling correction 

algorithms. Fig. 3(A) shows pooled participant results comparing character-based (Perrin et 
al.) and word-based (simple dictionary) spelling correction. It can be observed that using the 

positional context of errors via a priori knowledge of the user's language in word-based 

spelling correction noticeably improves P300 speller word and character accuracy. Fig. 3(B) 

shows pooled participant results comparing the effect of including additional information 

from either the ErrP or P300 classifier to a simple dictionary spelling correction, as 
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characters in word choices are differently weighted. Fig. 3(C) shows participant-specific 

results, ordered by increasing raw P300 speller character accuracy.
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