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� Psychological factors such as working memory may help to account for individual differences in BCI
performance.

� Working memory is a construct that can be increased through training, making it a potential avenue
for increasing BCI performance.

� Reducing individual differences in BCI performance can lead to a wider range of users and higher BCI
performance accuracy.

a b s t r a c t

Objective: The purpose of the present study is to evaluate the relationship between working memory and
BCI performance.
Methods: Participants took part in two separate sessions. The first session consisted of three
computerized tasks. The List Sorting Working Memory Task was used to measure working memory,
the Picture Vocabulary Test was used to measure general intelligence, and the Dimensional Change
Card Sort Test was used to measure executive function, specifically cognitive flexibility. The second
session consisted of a P300-based BCI copy-spelling task.
Results: The results indicate that both working memory and general intelligence are significant
predictors of BCI performance.
Conclusions: This suggests that working memory training could be used to improve performance on a BCI
task.
Significance: Working memory training may help to reduce a portion of the individual differences that
exist in BCI performance allowing for a wider range of users to successfully operate the BCI system as well
as increase the BCI performance of current users.
� 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Brain–computer interfaces (BCIs) are an alternative form of
communication that, unlike the majority of augmentative and
alternative communication (AAC) devices, require no muscular
movement or control. BCIs use brain signals instead of overt move-
ment for the purpose of controlling a computer. AAC devices
include any method of communication that does not require
speech (Brownlee and Palovcak, 2007). Examples of these include
writing, typing, letter and picture boards, eye blinks, and eye track-
ing devices. A BCI can facilitate communication for people who
have severe speech and physical impairments (SSPI; Akcakaya
et al., 2014). More specifically, BCI devices can be a viable commu-
nication option for people who cannot adequately control augmen-
tative and assistive communication (AAC) technology that depends
on residual muscle control. This group of people includes those
with classic locked-in syndrome (LIS), which refers to a condition
in which an individual has lost all neuromuscular control except
for eye movement (Bauer et al., 1979). Individuals with SSPI typi-
cally have more motor function than those with LIS; however, they
are still unable to maintain a desirable level of communication
through speech or writing. In some situations, people who have
SSPI can benefit from the use of eye-tracking devices; however,
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as ocular muscle control deteriorates, eye-tracking devices can also
fail and a BCI can restore effective communication (Sellers et al.,
2010, 2014).

1.1. The P300 BCI

The P300 is often studied using what is known as an ‘‘oddball
paradigm”. According to Donchin and Coles (1988), in order to eli-
cit the classic oddball response, four conditions must be met. The
first is that a participant must be presented with at least two
categories of stimuli and each stimulus must fall into only one of
the categories. The second is that one type of stimulus must be pre-
sented less frequently than other stimuli. The third requirement is
that the participant is instructed to perform a task that entails
placing each stimulus into one of the categories. The final require-
ment is that the stimuli must be presented in a random order
(Donchin and Coles, 1988). Often times the task involves paying
attention to the rare stimulus and ignoring the frequent stimulus
(Fichtenholz et al., 2004). This usually involves instructing the par-
ticipant to silently count the number of times the rare stimulus is
presented (Farwell and Donchin, 1988). The P300 is amiable to BCI
use for a variety of reasons. It can be obtained through noninvasive
means, it involuntarily occurs in response to an attended stimulus,
it can be elicited without movement, calibration can be completed
in approximately 10 min, and the majority of people are able to use
it (Guger et al., 2009).

1.1.1. Psychological predictors of BCI performance
Signal processing and paradigm modifications have signifi-

cantly improved BCI performance. In contrast, participant specific
psychological factors have rarely been investigated. Many factors
influence BCI performance (Kleih et al., 2010). Some people find
the BCI very difficult to use and others are unable to use the system
at all. For example, Kübler et al. (2001) found that restrictions to
BCI use exist as a result of the patient’s psychological situation in
addition to technological and physical restraints. Johnson (1986)
developed a triarchic model of P300 amplitude in order to concep-
tualize variations in the P300-ERP response. Johnson’s model
demonstrates that both subjective probability and stimulus mean-
ing make equal but separate contributions to the P300 amplitude.
Both subjective probability and stimulus meaning are modulated
by a third dimension, information transmission (Johnson, 1986).
Psychological variables have also been shown to have an influence
on the P300 amplitude. Kleih et al. (2010) extended Johnson’s
research and showed that motivation also impacts the P300 ampli-
tude. Leeb et al. (2007) conducted an experiment that showed
highly motivated participants were more successful at navigating
a 3D environment than their counterparts. Hammer et al. (2012)
conducted a study using an SMR-BCI that identified several psy-
chological predictors of performance including accuracy of fine
motor skills and degree of concentration. Hammer et al. (2014) car-
ried out an additional study that showed visuo-motor coordination
ability as well as the ability to concentrate on the task at hand are
also significant predictors of SMR-BCI performance. Kübler et al.
(2001) went so far as to predict the failure of the field of BCI if
researchers do not begin to implement more psychological theory
and experimentation into their research instead of focusing solely
on the technological aspects of BCI. It has been suggested that
additional research should examine the variability in BCI perfor-
mance related to psychological factors and how these factors can
be used to improve and predict subsequent performance (Nijboer
et al., 2010).

1.1.2. Working memory
Over the years, several models of memory have been proposed.

One previously popular view was that of a dichotomous model
Please cite this article in press as: Sprague SA et al. The effects of working mem
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with a long-term memory and a short-term memory component.
Long-term memory is dependent on neuronal growth, whereas
short-term memory is a result of brief electrical activation
(Baddeley, 2003). The short-term memory component was meant
to comprise working memory. As additional research examined
the model, flaws began to arise within the idea that short-term
memory included working memory (Baddeley, 1992). This gave
rise to new theories that accounted for working memory being
more independent from short-term memory.

The term ‘‘working memory” was first used more than 40 years
ago by Miller et al. (1970). It was originally defined as a cognitive
system designed to temporarily store and manipulate information
(Baddeley and Hitch, 1975). Baddeley’s original model of working
memory contained three subcomponents: the central executive,
the visuospatial sketch pad, and the phonological loop. The central
executive controls the way an individual’s attention is divided
between the two subsystems. Experimental evidence has
demonstrated that the subsystems are resource limited. For exam-
ple, when dual tasks are performed in the same modality (i.e., both
auditory or both visual) performance suffers. In contrast, when one
task involves the auditory system and the other task involves the
visual system performance is similar to that observed in single task
conditions (Baddeley, 2000). Baddeley later added an additional
component to working memory, the episodic buffer. This
component is able to take information from the other three
components as well as from long-term memory and create a single
episodic representation that can be temporarily stored in the
buffer (Baddeley, 2000). The original model continues to remain
at the core of working memory theories today. Since the creation
of the original model, theories thereafter have expanded the model
to include multiple components such as attentional control
(Cowan, 1988; Logie, 2011) and individual differences (Jarrold
and Towse, 2006; Just and Carpenter, 1992; Unsworth and Engle,
2007).

Working memory differs between individuals and some indi-
viduals are able to retain more information and manipulate the
information more effectively than others (Baddeley, 2003;
Baddeley and Hitch, 1994). In a task designed to assess working
memory span, participants are read a series of words or numbers
and instructed to repeat as many words or numbers back as they
can remember. The List Sorting Working Memory Task (LSWM)
was used to measure working memory in the current study. In this
task, individuals are required to remember a series of words and
then recall them in a specific order (Weintraub et al., 2013). Fur-
ther details of the LSWM are discussed in Section 2.3.

Working memory, specifically working memory load, has been
shown to modulate the amplitude of the P300 response. The
greater the working memory load, the smaller the P300 amplitude
(Morgan et al., 2008). Research has also shown that working mem-
ory capacity is greater for more simple stimuli (e.g., colored letters;
Alvarez and Cavanagh, 2008). This means that working memory
capacity should be greater for tasks such as the BCI task because
the stimuli are made up of letters, numbers, and symbols. It has
also been shown that individuals with greater working memory
capacity have less load for any given task (Morgan et al., 2008),
meaning that individuals with greater working memory capacity
should perform better on the BCI task because it is less taxing cog-
nitively. By examining the relationship between working memory
and BCI performance in healthy participants, further insight can be
obtained on ways to improve BCI performance in our target popu-
lation. If working memory has a significantly large impact on accu-
racy, this information can be used to develop new methods to
improve BCI performance. This would be particularly beneficial
for individuals who have amyotrophic lateral sclerosis (ALS)
because it has been shown that some people with ALS show dete-
rioration in working memory (Hammer et al., 2011).
ory on brain–computer interface performance. Clin Neurophysiol (2015),

http://dx.doi.org/10.1016/j.clinph.2015.10.038


S.A. Sprague et al. / Clinical Neurophysiology xxx (2015) xxx–xxx 3
1.1.3. General intelligence
Intelligence has been defined as the mental ability to reason,

plan, solve problems, understand multifaceted concepts, and learn
quickly and efficiently (Gottfredson, 1994, p. 13). Spearman (1904)
originally developed the concept of general intelligence, also
known as ‘‘g” or the ‘‘g-factor.” He described it as representing a
general measure of cognitive ability that could be applied to vari-
ous kinds of cognitive tasks (Deary et al., 2010; Spearman, 1904).
The ‘‘g-factor” is responsible for a large portion of the individual
differences in cognitive ability and is a major source of the predic-
tive power of cognitive measures (Deary et al., 2010). General
intelligence is a component of executive function that has been
found to be highly correlated with working memory (Ackerman
et al., 2005). In particular, memory span, a component of working
memory, has been shown to be a crucial component of intellectual
functioning (Gignac and Weiss, 2015). Although the research sup-
porting this relationship has continued to grow in recent years,
there is some research that suggests the strength of this relation-
ship is not quite as strong or non-existent (Matarazzo, 1972). This
makes it an important construct to measure in the current study in
order to ensure the individual differences in BCI performance are
due to working memory and not general intelligence. The Pic-
ture Vocabulary Test (TPVT) was administered to measure general
intelligence (Weintraub et al., 2013). The TPVT is a single-word
vocabulary comprehension test used to measure the vocabulary
portion of language. Additional aspects of the TPVT are discussed
in Section 2.3.

1.1.4. Executive function
Executive function has been defined as a top–down process

involving cognitive control over activities aimed to achieve goals
(Weintraub et al., 2013, p. S55). Executive function changes
throughout the life span; it gradually increases during childhood
and begins to decline in old age (Zelazo et al., 2004). From a phys-
iological standpoint, processes of executive function are primarily
carried out in the frontal lobes of the brain (Craik and Bialystok,
2006). Executive function as a whole can be measured generally
to obtain an average estimate of an individual’s ability to conduct
high-level cognitive processes. There are several components
within executive function that can be controlled and measured in
order to obtain a more detailed analysis of an individual’s cognitive
abilities. These include mechanisms such as cognitive flexibility,
problem solving, working memory, general intelligence (‘‘g”), and
response inhibition and selection (Alvarez and Emory, 2006). The
Dimensional Change Card Sort Test (DCCS) was administered to
measure executive function (Weintraub et al., 2013). The DCCS is
designed to measure cognitive flexibility by requiring participants
to respond based on changing rules. Additional aspects of the DCCS
are discussed in Section 2.3.

1.1.5. Current study
Working memory is one of the factors that may account for

inter-individual differences in BCI performance. Conducting stud-
ies that compare working memory with performance on BCI tasks
can help create methods that can assist in accounting for individual
differences in BCI use, potentially leading to an increase in BCI
implementation and performance. The current study examined
executive function, general intelligence, and working memory
prior to completion of a BCI task. These measurements were taken
in order to compare the relationship between these constructs and
an individual’s performance on a BCI task. The focus of the current
study is working memory; however, executive function and gen-
eral intelligence are correlated with working memory and could
also affect BCI performance. Therefore, these measurements were
taken in order to account for this possibility and to determine what
portion of BCI task performance is due to working memory.
Please cite this article in press as: Sprague SA et al. The effects of working mem
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The main hypothesis of the study is that participants with high
levels of working memory capacity will show higher accuracy on a
BCI task because working memory is utilized during BCI use. When
a participant is using the BCI, he or she must formulate a sentence,
remember the sentence while spelling it, remember which charac-
ter he or she is currently trying to select, evaluate feedback from
the BCI, and make a decision regarding the next item to select. This
entire process is aided by working memory and a participant with
low working memory is more likely to make mistakes. Addition-
ally, the authors hypothesize that participants with high levels of
general intelligence and executive function will also show higher
accuracy on a BCI task. Furthermore, the authors hypothesize
that working memory will account for the most variance in
BCI performance, followed by executive function, and general
intelligence.
2. Methods

2.1. Participants

The study involved a sample of 34 healthy participants obtained
using the online participant pool at ETSU. The study was approved
by the ETSU Institutional Review Board.

2.2. Stimuli and materials

Each participant took part in two sessions conducted on differ-
ent days. Upon arriving at the first session, the participant read and
signed the informed consent document. The first session consisted
of three computerized measures. The order in which the measures
were completed was counter-balanced. In the second session, par-
ticipants operated a BCI.

2.3. Measuring psychological factors

The three instruments used in this study were selected from the
NIH (National Institutes of Health) Toolbox Cognition Battery, a
component of the NIH Toolbox for the Assessment of Neurological
and Behavioral Function (Gershon et al., 2013). The NIH consulted
with 102 experts in the field of cognition in order to select or
develop instruments to be included in the battery. The resulting
collection of instruments was then tested using a sample of 476
participants ages 3–85. The instruments were validated in English
and tested for age effects on performance, convergent and discrim-
inant construct validity, and test–retest reliability. Gold standard
measures of the constructs were used to test the convergent con-
struct validity of each measure.

The measures selected for this study were the List Sorting
Working Memory Test (LSWM), the Dimensional Change Card Sort
Test (DCCS), and the Picture Vocabulary Test (TPVT). Once the test
began, the participant responded verbally for the LSWM, used the
left and right arrow keys for the DCCS, and used the mouse for the
TPVT. Accuracy was recorded for all three measures and timing
was recorded for the DCCS. The scoring for all three measures pro-
vides a computed score and an age-adjusted score for easier
comparison.

The LSWMmeasures workingmemory by evaluating both infor-
mation processing and storage. This computerized test takes seven
minutes to administer and consists of two parts. For each trial in the
first portion of the task, the participant was presented with an
audio recording of a list of all animals or all food items. Participants
were simultaneously shown pictures of the animals or food items
on their monitor with the name of the animal or food item printed
under each picture. Participants were then asked to repeat the list
of animals or food items to the researcher in increasing size order.
ory on brain–computer interface performance. Clin Neurophysiol (2015),
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For trials in the second portion of the task, participants were
presented with a list containing both food and animals. They were
then instructed to repeat the list to the researcher in size order from
smallest to largest, naming the food items first and then the ani-
mals. The dependent measure was accuracy.

The DCCS measures executive function by determining cogni-
tive flexibility. The DCCS is also computerized and takes 4 min to
administer. There are 40 trials and each trial takes approximately
6 s to complete. The task required the participant to make judg-
ments regarding properties of objects. On each trial, the participant
was instructed to fixate on a star. The star was then replaced by a
cue word ‘‘shape” or ‘‘color” that indicated the property to be
reported. A target picture then replaced the word in the center of
the screen. Below the target picture were two more pictures, each
one matching either the target picture’s color or shape. The partic-
ipant’s task was to select whichever picture matched the target
picture based on the property given by the cue word. The selection
was made using the left or right arrow key.

All trials included in the first portion required the participant
to select the picture that matched the shape of the target picture.
All trials included in the second portion involved matching the
color of the target picture. The third portion included a mix of
the trials in the first two portions and participant was required
to match either the shape or color of the stimulus based on a
cue word (e.g., ‘‘shape,” ‘‘color”) that flashed before the two pic-
tures were presented. The dependent measures were speed and
accuracy.

The TPVT measures receptive vocabulary, which is considered
to be a good representation of general intelligence (‘‘g”). The test
takes approximately 4 min to administer and is completely com-
puterized. After the researcher read the participant the instruc-
tions, the test began by presenting the participant with an audio
recording of a word paired with a display of four pictures on the
monitor. For this test, the mouse was used to respond. Participants
were required to click on the picture that best matched the mean-
ing of the word specified by the experimenter. Accuracy was the
dependent measure.

2.4. Brain–computer interface task

The second session began with the participant being seated in
front of a monitor to the right of the researcher. Each participant
was given a series of surveys in order to measure his or her current
levels of fatigue, hunger, caffeine, motivation, and mood. These
were collected to be included in the statistical analyses as covari-
ates. The Stanford Sleepiness Scale (SSS) was used to measure fati-
gue. Three Visual Analogue Scales were created for this study;
measures of hunger, motivation, and mood. Caffeine use was also
measured. A second measure of motivation was also used, the
Questionnaire for Current Motivation for BCI2000 (QCM-BCI),
which was modified by Nijboer et al. (2008a,b) from the original
QCM (Rheinberg et al., 2001) to measure motivation specific to
the BCI task. All measures, except for the QCM-BCI, were given to
the participants to fill out during the first session as well. Partici-
pants were then shown an informational PowerPoint about the
BCI while they were measured and fitted with an EEG cap. The
BCI task presented an 8 � 9 matrix and the checkerboard paradigm
(CBP) was used to present the stimuli (Townsend et al., 2010).
During the first portion of the session, participants completed a
copy-spelling task that was used to calibrate the BCI. In copy-
spelling, participants are presented with a word at the top of the
screen and instructed to spell the word one letter at a time. Each
participant copy-spelled three, six-letter words selected from a
random word generator. An example of a calibration word is pre-
sented in Fig. 1. In this case, the participant is presented with the
word DRAGON. The letter the participant is currently trying to
Please cite this article in press as: Sprague SA et al. The effects of working mem
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select is presented at the end of the word in parentheses (Fig. 2).
Once the BCI starts, the characters in the matrix begin to flash in
groups (Fig. 2). The participant was instructed to focus on a specific
letter in the matrix and silently count how many times it flashed.
Prior to beginning calibration, they were allowed to practice using
the BCI by spelling out a three-letter word, DOG. Participants were
not given feedback during calibration.

Each group of stimuli was presented for 62.5 ms, followed by an
inter-stimulus interval (ISI) of 62.5 ms; thus, stimulus onset asyn-
chrony (SOA) was 125 ms. After spelling all three words, the data
were processed offline using SWLDA (discussed in detail below)
to produce a classifier that was used during the second portion
of the session, which provided ‘‘online feedback” regarding the
accuracy of the BCI selection.

For the online portion of the study, participants were required
to spell out three predetermined sentences: THE_CAT_IN_THE_-
HAT, THE_QUICK_BROWN_FOX, and MARY_HAD_A_LITTLE_LAMB.
During this portion of the session, the sentence was not displayed
at the top of the screen. The researcher read a sentence to the par-
ticipant and he or she was required to spell it, from memory, using
the BCI. This was done to increase cognitive load during the task to
make it more similar to how the BCI would be used in a practical
application. An example of feedback provided by the BCI is shown
in Fig. 3. Participants were instructed not to attempt to correct
mistakes and to move on to the next letter in the sentence if a mis-
take was made.

2.5. EEG acquisition and processing

A 32-channel EEG cap (tin electrodes; Electro-Cap International,
Inc.) was used to record the EEG. The left mastoid electrode acted
as the ground and the right mastoid electrode acted as the refer-
ence. Two 16-channel USB biosignal amplifiers from Guger Tech-
nologies (g.tec) were used in order to increase the amplitude of
the electrical activity from the scalp being recorded. The electrical
activity was then amplified (+/�2 V before ADC) before being dig-
itized at 256 Hz. The data were filtered using a 0.50–30.0 Hz band-
pass filter. The researcher ensured impedance values were below
30.0 kO before proceeding with the session. BCI2000 software
was used to control stimulus presentation, data collection, and
online processing (Schalk et al., 2004).

2.6. Classification

Stepwise linear discriminate analysis (SWLDA) was used to cre-
ate classifiers for this study. SWLDA has proven to be one of the
more successful classification techniques, making it widely used
across BCI studies (Krusienski et al., 2006, 2008). SWLDA weighs
the input features using ordinary least-squares regression. The fea-
ture that accounts for the highest amount of unique variance to
predict the target item is entered into the discriminant function.
After a feature has been added to the model, forward and backward
stepwise regression analyses are performed until no additional fea-
tures meet the inclusion criteria (p < 0.10) or the exclusion criteria
(p > 0.15), or the maximum number of features have been selected
(maximum of 60; Krusienski et al., 2006). Although the EEG cap
consists of 32 channels, only eight electrodes were used for BCI
operation: Fz, Cz, Pz, P3, P4, P07, P08, and Oz. Previous research
has shown that these eight electrodes perform as well as larger
montages for accuracy (Krusienski et al., 2006).

2.7. Statistical analysis

The means, standard errors, and standard deviations were cal-
culated for all measures including the NIH Toolbox tasks, BCI task,
and additional measures (motivation, mood, hunger, caffeine, and
ory on brain–computer interface performance. Clin Neurophysiol (2015),
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fatigue). Pearson correlations were also calculated to evaluate the
relationships between variables.
2.8. Regression analysis

The goal of this analysis was to estimate the magnitudes of the
influences of executive function, working memory, and general
intelligence (g) on BCI performance. This goal is complicated by
the interrelatedness between these three cognitive components.
For example, working memory is considered to be a component
of general intelligence, and intelligence tests such as the Weschler
Intelligence Scale for Children (WISC) frequently include measures
of working memory. Furthermore, even when these cognitive con-
structs are theoretically separable, it is extremely difficult to mea-
sure them independently. Because g is defined as the first common
factor that creates the positive manifold (e.g., positive correlations)
between performances on disparate cognitive tasks, it is inevitable
that tasks designed to measure specific cognitive components
(such as executive function) will also measure g to some extent.
Although working memory and executive function are theoreti-
cally distinct, measuring executive function without also inadver-
tently measuring working memory is challenging. In the DCCS
task used in this study, subjects must remember the cue long
enough to respond, suggesting that working memory will ‘‘con-
taminate” the responses to the executive performance task to some
extent. Similarly, in the LSWM working memory task, executive
Please cite this article in press as: Sprague SA et al. The effects of working mem
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function is required in order to plan and execute rehearsal and
recall.
3. Results

Data from 27 of the 34 participants were included in the statis-
tical analyses. Participants who were excluded from the analyses
were taken out for the following reasons: three participants failed
to complete both sessions, two were not native English speakers,
and two participants’ data were incomplete because of EEG record-
ing problems. NIH Toolbox scores and BCI performance accuracy
for the participants that were included in the analysis are listed
in Table 1.

3.1. Descriptive statistics

Table 2 shows mean scores on all three NIH Toolbox tasks and
the BCI task. The mean scores for all three NIH Toolbox tasks were
within one standard deviation of the normative data (mean = 100;
SD = 15).

Similarly, Table 3 presents measures collected in the second
session. Correlations between the NIH Toolbox tasks and BCI per-
formance accuracy are included in Table 4. Correlations between
all measures are presented in Table 5 (first session) and Table 6
(second session). Table 7 provides the significance of variables with
mediators (i.e., hunger, caffeine, fatigue, mood, and motivation)
ory on brain–computer interface performance. Clin Neurophysiol (2015),
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excluded and included. Table 8 shows the model fit R2 for media-
tors excluded and included.

3.2. Regression analyses

This analysis proceeded in two stages. In the first stage, linear
regression models were used to create ‘‘residualized” versions of
the executive function and general intelligence variables. These
residualized variables would be free of ‘‘cross-contamination” with
the other cognitive constructs and would thereby represent purer
independent measurements of their target constructs. The residu-
alized executive function variable was created by regressing the
executive function (DCCS) scores on general intelligence (TPVT)
and working memory (LSWM). The residuals from this model
thereby represented the unexplained variance in executive func-
tion after statistically removing the influences of general intelli-
gence and working memory. These residuals were recorded in a
variable that would be used in stage two of the analysis. Using a
similar procedure, the residualized general intelligence variable
was created by saving the residuals from a regression of general
intelligence (TPVT) on executive function (DCCS) and working
memory (LSWM); the residualized general intelligence variable
would likewise be used in the next stage of the analysis.

The logit transformation of the BCI accuracy outcome variable
was necessary because the outcome, being a proportion, has a ceil-
ing at one and is not measured on an interval scale. However, the
linear regression model assumes that the outcome variable is
unconstrained with respect to its range and that the functional
form of the relationship between the predictor and outcome
variable is linear. Both of these assumptions are violated when
the outcome variable is a percentage, the latter because the mean-
ing of a unit gain in proportion correct does not represent equal
Please cite this article in press as: Sprague SA et al. The effects of working mem
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improvement over the full range of the scale. Therefore, our out-
come variable was transformed prior to analysis via the logit trans-
formation. The logit transformation is defined as:

logitðpÞ ¼ log
p

1� p

� �

where the natural log function is assumed. This transformation
maps the BCI proportion correct outcome onto an unconstrained
metric for which the linear functional form is reasonable.

In stage two, a stepwise linear regression model was fit to the
data, regressing the logit-transformed BCI proportion correct on
the working memory (LSWM) scores, the residualized general
intelligence scores, the residualized executive function scores,
and a set of covariates. Model 2A included as covariates measures
of hunger, mood, caffeine, and fatigue. Model 2B retained added
additional covariates including mastery confidence, incompetence
fear, interest, challenge, and motivation. Results from these two
models are summarized in Tables 7 and 8. Results from model
2A revealed statistically significant effects of working memory
(b = .444, p = .024) and the residualized general intelligence vari-
ables (b = .643, p = .005). In the covariate part of the model, only
the hunger measure was significantly associated with logit BCI per-
formance (b = .483, p = .014). The model explained 75.2% of the
variance in logit BCI performance.

Model 2B retained all predictors from model 2A and added a set
of psychological variables including mastery confidence, incompe-
tence fear, interest, challenge, and motivation. After adding those
additional covariates, the effect of working memory became non-
significant (b = 0.454, p = .171) while the effects of general intelli-
gence (b = 0.627, p = .021) and hunger (b = 0.467, p = .040)
remained statistically significant but slightly diminished in
magnitude. Model 2B explained 77.6% of the variance in logit BCI
ory on brain–computer interface performance. Clin Neurophysiol (2015),

http://dx.doi.org/10.1016/j.clinph.2015.10.038


Fig. 3. Example of feedback during online portion.

Table 1
Data for NIH Toolbox tasks and BCI performance accuracy.

Subject ID NIH Toolbox tasks BCI performance accuracy

LSWM DCCS TPVT Percent correct

ExStudy_009 103.57 119.15 102.31 94.92
ExStudy_010 80.70 87.13 88.07 6.78
ExStudy_011 140.86 97.57 128.70 100.00
ExStudy_012 97.60 111.36 117.52 94.92
ExStudy_014 118.14 109.94 113.75 79.66
ExStudy_015 89.14 101.53 100.16 71.19
ExStudy_016 128.24 107.80 108.53 76.27
ExStudy_017 118.14 105.00 92.84 10.17
ExStudy_018 108.26 113.55 130.95 50.85
ExStudy_019 89.14 119.65 114.80 89.83
ExStudy_021 94.33 105.35 99.41 74.58
ExStudy_022 102.63 122.65 117.02 91.53
ExStudy_023 103.57 117.95 94.94 91.53
ExStudy_025 108.26 116.57 91.69 91.53
ExStudy_026 113.85 111.64 120.21 91.53
ExStudy_027 113.85 105.00 97.13 91.53
ExStudy_029 98.44 110.89 117.54 86.44
ExStudy_031 103.57 100.84 77.91 55.93
ExStudy_033 89.14 114.71 100.89 44.07
ExStudy_034 122.75 120.42 116.61 66.10
ExStudy_036 84.92 105.02 112.23 35.59
ExStudy_037 108.26 119.65 102.94 45.76
ExStudy_038 98.44 103.46 117.03 44.07
ExStudy_039 98.44 116.31 120.21 55.93
ExStudy_040 94.33 95.84 89.39 25.42
ExStudy_041 98.44 101.79 103.96 5.08
ExStudy_042 108.01 124.21 114.88 72.88
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performance, but its adjusted R2 value is lower due to the increased
number of predictor variables and the small sample size.

4. Discussion

Our analysis found evidence of an association between BCI
accuracy and both general intelligence and working memory. The
influence of general intelligence persisted across models with
two varying sets of covariates, while the influence of working
memory faded to non-significance when the psychological covari-
ates were included in the model. We believe that the working
memory effect disappeared because one or more of the psycholog-
ical covariates (i.e., hunger, caffeine, fatigue, mood, and motiva-
tion) are likely mediators of the relationship between working
memory and BCI accuracy. If working memory does exert a causal
influence on BCI performance, and some of this influence is trans-
mitted through psychological variables such as motivation and
mood, then controlling for these mediating variables will reduce
the magnitude of the regression coefficient for working memory
on BCI performance. We note specifically that this ‘‘diminishing”
of effect happened only for the working memory variable, which
was not residualized prior to analysis. It is possible that psycholog-
ical variables also mediate the effect of general intelligence but
those mediational effects were diminished by the residualization
process. Future research should explicitly investigate possible
mediation; our sample size prohibited formal mediation analysis.
We note that our sample size implies relatively poor precision of
estimation and limited statistical power; larger samples may
reveal additional relationships between these variables.

The majority of BCI research focuses on improving the hardware
and signal processing methods. Although advancements in
Please cite this article in press as: Sprague SA et al. The effects of working mem
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technology are necessary to continue progress in the field of BCI,
additional research focusing on the users can provide further
advancements where the technology falls short. Few studies have
ory on brain–computer interface performance. Clin Neurophysiol (2015),
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Table 2
Means, standard deviations, and standard errors for first session.

LSWM DCCS TPVT VAS Mot. VAS Mood Hunger Caffeine Fatigue

Mean 104.26 109.81 107.10 7.49 7.72 3.11 53.79 1.96
SD 13.71 9.14 13.14 1.86 1.52 2.45 89.66 0.76
SE 2.64 1.76 2.53 0.36 0.29 0.47 17.26 0.15

LSWM = List Sorting Working Memory Test; DCCS = Dimensional Change Card Sort Test; TPVT = Picture Vocabulary Test; VAS Mot = Visual Analogue Scale of Motivation; VAS
Mood = Visual Analogue Scale of Mood.

Table 3
Means, standard deviations, and standard errors for second session.

BCI Acc. VAS Mood VAS Mot. Hunger Caffeine Fatigue QCM-BCI

IF I C MC

Mean 0.65 7.61 7.47 3.56 47.24 2.11 2.36 5.42 5.16 5.57
SD 0.29 2.06 2.37 2.75 69.73 0.89 1.13 1.21 0.68 0.99
SE 0.06 0.40 0.46 0.53 13.42 0.17 0.22 0.23 0.13 0.19

BCI Acc. = brain–computer interface accuracy; VAS Mood = Visual Analogue Scale of Mood; VAS Mot = Visual Analogue Scale of Motivation; IF = incompetence fear;
I = interest; C = challenge; MC = mastery confidence.

Table 4
Table of correlations between NIH Toolbox tasks and BCI performance accuracy.

LSWM DCCS TPVT BCI Performance

LSWM .140 .304 .359
DCCS .140 .366 .490**

TPVT .304 .366 .347
BCI Performance .359 .490** .347

LSWM = List Sorting Working Memory Test; DCCS = Dimensional Change Card Sort
Test; TPVT = Picture Vocabulary Test; BCI Performance = brain-computer interface
performance.

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).
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examined the causal mechanisms behind individual differences in
BCI performance. By evaluating the impact of psychological factors
such as executive function, general intelligence, and working
memory on BCI performance, a better understanding of the causal
factors behind variation in BCI performance can be achieved.

Both working memory and general intelligence were found to
have significant effects on BCI performance; therefore, both can
be measured in order to predict BCI performance. General intelli-
gence tends to remain stable throughout the lifespan, whereas
working memory is a more malleable construct. Working memory
can be increased through training, which should lead to an increase
in an individual’s BCI performance.

There are a number of possible explanations as to why working
memory is related to BCI performance. When a user is using the
system to spell out a sentence, he or she must formulate a sen-
tence, remember the sentence while spelling it, and remember
which character he or she is currently trying to select. This entire
process is aided by working memory and a user with lower work-
ing memory is more likely to make mistakes due to forgetting
where he or she is at in the sentence. It is well known that there
is a strong attentional component in the BCI task and the central
executive component of working memory assists with attentional
control.

4.1. Working memory training

Working memory capacity has been previously thought to be a
stable construct; however, recent research has indicated that there
is plasticity in the neural systems underlying working memory
that is training-induced (Olesen et al., 2003). Studies have shown
that taking part in a training program containing working memory
Please cite this article in press as: Sprague SA et al. The effects of working mem
http://dx.doi.org/10.1016/j.clinph.2015.10.038
tasks can create increased activity in the prefrontal and parietal
cortices, leading to improved performance on working memory
tasks and increased working memory capacity (Akerlund et al.,
2013; Klingberg, 2010; Olesen et al., 2003).

There are several different training procedures that can be
implemented in order to improve working memory. The majority
of training programs take place over a period of 5 weeks, 5 days
per week, for under an hour (Klingberg, 2010; Morrison and
Chein, 2010; Olesen et al., 2003). Training tasks involving varia-
tions of the n-back task have been shown to significantly increase
working memory (Morrison and Chein, 2010; Verhaeghen et al.,
2004). An n-back task with a four-back condition requires partici-
pants to indicate if each new stimulus is the same as the stimulus
shown four items back. The n-back task can be distributed as a
computerized measure for easy administration and data collection.
The response system used to complete the n-back task can be mod-
ified to meet the needs of the user. For example, if the user has con-
trol over their eye movements, he or she may use eye blinks or
looking to the left or the right to respond.

While several studies have demonstrated an increase in work-
ing memory as a result of working memory training, other studies
have raised concerns related to the methodology used within these
studies as well as the efficacy of working memory training in gen-
eral (Shipstead et al., 2012). These concerns include the absence of
a control group or the use of no-contact control groups, the use of
subjective measures of working memory improvements (e.g., self-
report measures), inconsistent use of working memory tasks, and
researchers defining improvements in working memory through
performance on a single task (Shipstead et al., 2012). Shipstead
et al. (2012) provide an outline for working memory training in
order to demonstrate that the training program successfully
increased working memory capacity. Two groups should be
included, a control group and an experimental group. The control
group should take part in all components of the experiment; how-
ever, instead of participating in the working memory training pro-
gram, they should participate in a similar training program
designed to improve a different construct. Prior to the commence-
ment of training, a pretest should be administered that incorpo-
rates a battery of tasks designed to measure working memory
capacity. Approximately 20 training sessions are suggested, with
each session lasting between 30 min to an hour. The training pro-
gram should adapt to user performance through the modification
of the length of the list of items to be remembered. Upon comple-
tion of the training program, participants should take part in a
ory on brain–computer interface performance. Clin Neurophysiol (2015),
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Table 5
Table of correlations between all measures for the first session.

LSWM DCCS TPVT VAS Mot VAS Mood Hunger Caffeine Fatigue

LSWM .304 .066 .192 .325 .242 .204
DCCS .140 �.061 �.236 .152 .074 �.010
TPVT .304 .366 .169 .089 .618** �.323
VAS Mot .066 �.061 .282 �.173 .255 �.363
VAS Mood .192 �.236 .169 .389* .281 �.111
Hunger .325 .152 .089 �.173 .071 .130
Caffeine .242 .074 .618** .255 .281 �.170
Fatigue .204 �.010 �.323 �.363 �.111 .130 �.082

LSWM = List Sorting Working Memory Test; DCCS = Dimensional Change Card Sort Test; TPVT = Picture Vocabulary Test; VAS Mot = Visual Analogue Scale of Motivation; VAS
Mood = Visual Analogue Scale of Mood.

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

Table 6
Table of correlations between all measures for the second session.

BCI Acc. MC IF I C VAS Mot. VAS Mood Hunger Caffeine Fatigue

BCI Acc. �.299 .117 �.081 �.106 .212 .287 .021 .021
MC .241 .657** .220 .362 .448* �.146 .323 �.281
IF �.299 �.639** .141 �.230 �.445* �.084 �.134 .370
I .117 .657** �.391* .651** .636** �.292 .476* �.423*

C �.081 .220 .141 .681** .351 �.342 .259 �.030
VasMot �.106 .362 �.230 .651** .486* �.453* .312 �.576**

Vas Mood .212 .448* �.445* .636** .073 .729** .341 �.627**

Hunger .287 �.146 �.084 �.292 .081 �.453* �.447* .212
Caffeine .021 .323 �.134 .476* .192 .312 .341 �.131
Fatigue .021 �.281 .370 �.423* .883 �.576** �.627** .212 �.228

BCI Acc. = brain–computer interface accuracy; MC = mastery confidence; IF = incompetence fear; I = interest; C = challenge; VAS Mot = Visual Analogue Scale of Motivation;
VAS Mood = Visual Analogue Scale of Mood.

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

Table 7
Significance of variables with mediators excluded and included.

Model Unstandardized
coefficients

Standard
coefficients

t p

B SE B b

(Constant) �4.139 2.873 �1.440 .166
EF_minus_WM_and_G .071 .042 .300 1.695 .106
G_minus_WM_and_EF .110 .035 .643 3.168 .005
WM with G and EF .069 .028 .444 2.446 .024
P2_hunger .355 .131 .483 2.708 .014
P2_mood .388 .242 .397 1.606 .125
P2_caffeine �.008 .005 �.280 �1.614 .123
P2_fatigue .590 .505 .260 1.169 .257

(Constant) �4.906 4.848 �1.012 .329
EF_minus_WM_and_G .054 .072 .226 .744 .469
G_minus_WM_and_EF .108 .042 .627 2.590 .021
WM with G and EF .070 .049 .454 1.442 .171
P2_hunger .349 .154 .476 2.265 .040
P2_mood .516 .418 .528 1.235 .237
P2_caffeine �.009 .006 �.317 �1.418 .178
P2_fatigue .519 .810 .229 .641 .532
P2_mastery_confidence �.014 .598 �.007 �.023 .982
P2_incompetence_fear .254 .530 .143 .480 .638
P2_interest .439 .735 .263 .598 .559
P2_challenge �.189 1.187 �.064 �.159 .876
P2_motivation �.257 .306 �.302 �.840 .415
Dependent variable: logit_BCI

EF_Minus_WM_and_G = the residualized executive function variable; G_Min-
us_WM_and_EF = the residualized general intelligence variable; WM with G and
EF = the residualized working memory variable; logit_BCI = the logit transformation
of brain-computer interface accuracy outcome variable.

Table 8
Model fit R2 for mediators excluded and included.

Model R R2 Adjusted R2 SE

1 .752a .565 .405 1.558
2 .776b .602 .261 1.736

a Predictors: (constant), P2_fatigue, WM with G and EF, P2_hunger, P2_caffeine,
EF_minus_WM_and_G, G_minus_WM_and_EF, P2_mood.

b Predictors: (constant), P2_fatigue, WM with G and EF, P2_hunger, P2_caffeine,
EF_minus_WM_and_G, G_minus_WM_and_EF, P2_mood, P2_mastery_confidence,
P2_challenge, P2_incompetence_fear, P2_motivation, P2_interest.
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posttest that includes alternate versions of the pretest tasks. The
tasks used in both the pretest and the posttest should differ from
the tasks used in the training program in order to demonstrate that
Please cite this article in press as: Sprague SA et al. The effects of working mem
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the working memory training has successfully transferred to tasks
other than those used in the training program (Shipstead et al.,
2012). Even with the above-mentioned procedures, further
research is still needed to determine the true efficacy of working
memory training.

Improvements on the training task are confounded because
increased performance accuracy may be due to task-specific prac-
tice. Therefore, performance transfer must be demonstrated using
untrained working memory tasks (Shipstead et al., 2012), such as
BCI, for example. It is also possible that repeated use of the BCI
leads to an increase in BCI performance by improving working
memory over time. It may be the case that the BCI task itself is a
better training method than tasks such as the n-back task for
increasing working memory. In order to determine which method
provides a larger and/or faster increase in BCI performance, a study
including a BCI task group, a n-back task group (or other working
memory training task), and a control group should be conducted.
The current study was unable to test this hypothesis because it
was limited to a single BCI session. Previous research conducted
over many sessions has shown that performance does not improve
with practice (e.g., Nijboer et al., 2008a,b; Sellers et al., 2010). The
ory on brain–computer interface performance. Clin Neurophysiol (2015),
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results suggest that practice alone will not necessarily improve BCI
performance and incorporating a working memory training task in
conjunction with BCI practice may be advantageous.

Recent research, such as that of Nijboer et al. (2010), has sug-
gested that psychological factors may offer a significant contribu-
tion to the prediction of BCI performance. Understanding which
factors contribute to an individual’s performance on a BCI task
can help inform training procedures in order to allow a greater
number of people to successfully operate the BCI as well as
improve the BCI performance accuracy of current users. Studies
such as that of Kleih et al. (2010) as well as the current study show
promising results associated with psychological factors as predic-
tors of BCI performance. Further research on these factors should
lead to an overall improvement in BCI performance and allowmore
people to benefit from the technology.

5. Conclusion

Recently there has been an increased interest in researching
psychological factors that have the potential to influence BCI per-
formance. Through the examination of potential contributing fac-
tors such as executive function, general intelligence, and working
memory, more can be learned about the causation of individual
differences in BCI performance. The current study provides promis-
ing results indicating that there are additional psychological fac-
tors outside of motivation that contribute to a user’s BCI
performance. Future research should focus on determining other
potential psychological factors that are related to BCI performance
such as anxiety, personality type, and self-esteem. This increase in
knowledge will help to better inform BCI training procedures in
order to allow a broader range of individuals to successfully oper-
ate and communicate using BCIs.
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