Franklin Math Bowl

Algebra I Exam

2002

1. Solve for x: \(2(x - 3) + 5 = (2x - 1) - 5(1 - x)\)
 a) \(x = 1\)
 b) \(x = 3\)
 c) \(x = \frac{1}{2}\)
 d) \(x = -1\)

2. Solve for y: \(4 - 3y \leq 2(5 - y)\)
 a) \(y \leq 6\)
 b) \(y < 6\)
 c) \(y \geq -6\)
 d) \(y \geq -3/2\)

3. Solve for B: \(2B^2 + 5B - 3 = 0\)
 a) \(B = 2\) or \(B = 1\)
 b) \(B = \frac{1}{2}\) or \(B = -3\)
 c) \(B = 2\) or \(B = 3\)
 d) \(B = -1/2\) or \(B = 3\)

4. Solve for \(\theta\): \(\theta^2 - \theta - 6 > 0\)
 a) \(1 < \theta < 6\)
 b) \(-2 < \theta < 3\)
 c) \(\theta < -2\) or \(\theta > 3\)
 d) \(\theta > 3\)

5. Simplify:
 \[
 \frac{x}{2} - \frac{4}{x^2} - \frac{2}{x}
 \]
 a) \(\frac{x^2 + 2x + 4}{2}\)
 b) \(\frac{x^3}{4 - x^2}\)
 c) \(-(x-4)\)
 d) \(\frac{(x-4)(x-x^2)}{2-x^2}\)
6. Let \(f(x) = 1 - 3x^2 \) and \(g(x) = 2x + 5 \). Find \(f(g(x)) \).

a) \(7 - 6x^2 \)
 b) \(-3 - 6x^2 \)
 c) \(4x^2 + 20x + 23 \)
 d) \(-12x^2 - 60x - 74 \)

7. The sum of two numbers is 12. The difference between them is 4. What are the two numbers?

a) 8 and -4
 b) 8 and 4
 c) -8 and -4
 d) 6 and -6

8. What is the domain of the function \(f(x) = \sqrt{4-x} \) ?

a) \(4 \geq x \)
 b) \(4 > x \)
 c) \(x > -4 \)
 d) \(x \geq 0 \)

9. The solution for \(3 < |2x - 5| \) is

a) \(1 < x < 9 \)
 b) \(1 < x < 4 \)
 c) \(x < 1 \) or \(4 < x \)
 d) \(4 < |x| \)

10. Tub A contains a solution that is 10% hydrochloric acid. Tub B contains 3 liters of a solution that is 50% hydrochloric acid. How much of the liquid from Tub A must be carefully added to Tub B so that the new mixture in Tub B is 40% hydrochloric acid?

a) 1 liter
 b) 2 liters
 c) 2/3 liter
 d) 3 liters

11. Find the greatest common divisor for these two expressions:

 \((x - 2)^2(x^2 - x - 12) \) and \((x - 2)(x^2 + x - 6) \)

a) \(x - 2 \)
 b) \((x - 2)(x + 3) \)
 c) \((x - 2)^2(x + 3) \)
 d) \((x - 2)^2(x + 3)(x - 4) \)
12. The unique solution to this system of equations is

\[
\begin{align*}
2x - 3y &= 4 \\
5x - 6y &= 10
\end{align*}
\]

a) (-2, 0) b) (0, 2) c) (5, 2) d) (2, 0)

13. Keith can paint a certain room by himself in 4 hours. Michael can paint the same room by himself in 6 hours. How long will it take them to paint the room together?

a) 2.4 hours b) 4.2 hours c) 5 hours d) 5/12 hours.

14. The least common multiple of these two expressions is

\[
\begin{align*}
x^4y^6z \quad \text{and} \quad x^5y^2z^7
\end{align*}
\]

a) \(x^4y^2z\) b) \(x^5y^6z^7\) c) \(x^9y^8z^8\) d) \(xy^4z^6\)

15. Solve for \(x\):

\[
\frac{2}{x} + \frac{3}{x-1} = 4 + \frac{3}{x^2-x}
\]

a) \(x = \frac{5}{4}\) and \(x = 1\) b) \(x = 1\) and \(x = 5\) c) \(x = 5\) d) \(x = \frac{5}{4}\)

16. The perimeter of a rectangle is three times its width. Its length is five meters. What is the width of the rectangle?

a) 5 m b) 15 m c) 10 m d) 30 m

17. The prime factorization of 1200 is

a) \(12 \times 100\) b) \(10^2 \times 12\) c) \(2^4 \times 75\) d) \(2^4 \times 3 \times 5^2\)

18. Evaluate

\[
\begin{align*}
3 \div 2 + 1 \div 6 - 5 \div 12 \div 3
\end{align*}
\]

a) -1 b) 1 c) 3 \(\div\) 1 \(\div\) -1 \(\div\) 4 \(\div\) d) 0
19. Simplify \((x^2y^3)^4(x^3z)^{-1}\)

\[\text{a) } \frac{x^2 y^{14}}{z} \quad \text{b) } \frac{y^{14}}{x^9 z} \quad \text{c) } \frac{x^2 y^{14}}{x^{11} z} \quad \text{d) } -8x^2y^4z\]

20. An air taxi service can sell a maximum of 500 tickets for seats on a certain airplane. When the tickets cost $100 each, all of the tickets will sell. For every $10 increase in the price of a ticket, 1 more ticket will not be sold. Find expressions for the ticket price and the number of tickets that will be sold if 't' tickets are not sold.

\[\text{a) price } = 100 + 10t \quad \text{b) price } = 500 - 10t \]

\[\text{tickets } = 500 - t \quad \text{tickets } = 100 + t\]

\[\text{c) price } = 100 - 10t \quad \text{d) price } = 100 \]

\[\text{tickets } = 500 + t \quad \text{tickets } = 500\]

21. Which of the following is a linear expression?

\[\text{a) } 2 + xy \quad \text{b) } 2x^2 + 3y \quad \text{c) } 3x - 2/y \quad \text{d) } 2x + 3y\]

22. Suppose \(a, b, \) and \(c\) are real numbers. Which statement reflects the distributive property of multiplication over addition?

\[\text{a) } a(b + c) = ab + ac \quad \text{b) } a(bc) = (ab)c \]

\[\text{c) } a/(b + c) = a/b + a/c \quad \text{d) } ab = ba\]

23. Put these numbers in increasing order: 50%, 1/5, 5/11, 0.50

\[\text{a) } 1/5, 5/11, 0.50, 50\% \quad \text{b) } 50\%, 1/5, 5/11, 0.50 \]

\[\text{c) } 1/5, 5/11, 50\%, 0.50 \quad \text{d) } 5/11, 0.50, 50\%, 1/5\]

24. Which of \(1/3, \sqrt{3}, 33/47, \pi\) are irrational numbers?

\[\text{a) } \sqrt{3}, \pi \quad \text{b) } 1/3, 33/47 \quad \text{c) } \text{only } \sqrt{3} \quad \text{d) } \sqrt{3}, 33/47, \pi\]
25. The solution to this system of equations consists of three numbers. What is the sum of the three numbers?

\[
\begin{align*}
x + 3y - z &= 2 \\
3x - 3y + 2z &= -2 \\
-x + 6y - \frac{1}{2}z &= 13
\end{align*}
\]

a) 13 \hspace{1cm} b) \frac{5}{3} \hspace{1cm} c) \frac{7}{3} \hspace{1cm} d) -2 \frac{2}{3}