Pattern Avoidance on k ary Heaps (Work in Progress aren they all)

Derek Levin, Lara Pudwell, Manda Riehl, and Andrew Sandberg

University of Wisconsin - Eau Claire, Valparaiso University

Permutation Patterns - July 10, 2014

Once upon a time.

Motivation

Sophia Yakoubov: Paris 2013

Sophia Yakoubov: Paris 2013 Pattern Avoidance on Combs

[1]

Motivation

Something like combs, but not combs

Heaps!

Something like combs, but not combs

Heaps!

Heaps

Definition

A complete binary tree is a tree where each node has 2 or fewer children, all levels except possibly the last are completely full, and the last level has all its nodes to the left side.

Heaps

Definition

A heap is a complete binary tree labelled with $\{1, \ldots, n\}$ such that every child has a larger label than its parent.

Heaps

Definition

A heap is a complete binary tree labelled with $\{1, \ldots, n\}$ such that every child has a larger label than its parent.

Where's the pattern?

Where's the pattern?

Where's the pattern?

14268357910

Where's the pattern?

$$
14268357910
$$

Notice this heap contains 123, 132, 213, 231, 312.

Where's the pattern?

$$
14268357910
$$

Notice this heap contains 123, 132, 213, 231, 312.
But it avoids 321.

k ary Heaps

k ary Heaps

124312576118109
This heap avoids 231 .

Forests of Heaps

Forests of Heaps

Notice each tree avoids $213,231,312,321$, but the forest contains 213, 231, 312, 321.

Crunch the numbers, cross your fingers

Heaps Avoid- ing:	Sequence	OEIS\#
\emptyset	$1,1,2,3,8,20,80,210,896 \ldots$	
123	$1,1,1,0,0,0,0,0 \ldots$	
132	$1,1,1,1,1,1,1,1 \ldots$	
213	$1,1,2,2,5,5,14,14,42 \ldots$	
$231=312$	$1,1,2,3,7,14,37,80,222, \ldots$	
321	$1,1,2,3,7,16,45,111,318 \ldots$	
$\{213,231\}$ $\{213,312\}$$=$	$1,1,2,2,4,4,8,8,16 \ldots$	
$\{213,321\}$	$1,1,2,2,4,4,7,7,11 \ldots$	
$\{231,312\}$ $\{231,321\}$$=$	$1,1,2,3,6,11,22,42,84 \ldots$	
$\{231,312,321\}$	$1,1,2,3,5,8,13 \ldots$	

Crunch the numbers, cross your fingers

Heaps Avoid- ing:	Sequence	OEIS\#
\emptyset	$1,1,2,3,8,20,80,210,896 \ldots$	A056971
123	$1,1,1,0,0,0,0,0 \ldots$	
132	$1,1,1,1,1,1,1,1 \ldots$	
213	$1,1,2,2,5,5,14,14,42 \ldots$	
$231=312$	$1,1,2,3,7,14,37,80,222, \ldots$	
321	$1,1,2,3,7,16,45,111,318 \ldots$	
$\{213,231\}$ $\{213,312\}$$=$	$1,1,2,2,4,4,8,8,16 \ldots$	
$\{213,321\}$	$1,1,2,2,4,4,7,7,11 \ldots$	
$\{231,312\}$ $\{231,321\}$$=$	$1,1,2,3,6,11,22,42,84 \ldots$	
$\{231,312,321\}$	$1,1,2,3,5,8,13 \ldots$	

Crunch the numbers, cross your fingers

Heaps Avoid- ing:	Sequence	OEIS\#
\emptyset	$1,1,2,3,8,20,80,210,896 \ldots$	A056971
123	$1,1,1,0,0,0,0,0 \ldots$	A000004
132	$1,1,1,1,1,1,1,1 \ldots$	A0000012
213	$1,1,2,2,5,5,14,14,42 \ldots$	
$231=312$	$1,1,2,3,7,14,37,80,222, \ldots$	
321	$1,1,2,3,7,16,45,111,318 \ldots$	
$\{213,231\}$ $\{213,312\}$$=$	$1,1,2,2,4,4,8,8,16 \ldots$	
$\{213,321\}$	$1,1,2,2,4,4,7,7,11 \ldots$	
$\{231,312\}$ $\{231,321\}$$=$	$1,1,2,3,6,11,22,42,84 \ldots$	
$\{231,312,321\}$	$1,1,2,3,5,8,13 \ldots$	

Crunch the numbers, cross your fingers

Heaps Avoid- ing:	Sequence	OEIS\#
\emptyset	$1,1,2,3,8,20,80,210,896 \ldots$	A056971
123	$1,1,1,0,0,0,0,0 \ldots$	$A 000004$
132	$1,1,1,1,1,1,1,1 \ldots$	$A 000012$
213	$1,1,2,2,5,5,14,14,42 \ldots$	A208355
$231=312$	$1,1,2,3,7,14,37,80,222, \ldots$	
321	$1,1,2,3,7,16,45,111,318 \ldots$	
$\{213,231\}$ $\{213,312\}$$=$	$1,1,2,2,4,4,8,8,16 \ldots$	
$\{213,321\}$	$1,1,2,2,4,4,7,7,11 \ldots$	
$\{231,312\}$ $\{231,321\}$$=$	$1,1,2,3,6,11,22,42,84 \ldots$	
$\{231,312,321\}$	$1,1,2,3,5,8,13 \ldots$	

Crunch the numbers, cross your fingers

Heaps Avoiding:	Sequence	OEIS\#
\emptyset	1, 1, 2, 3, 8, 20, 80, 210, $896 \ldots$	A056971
123	1, 1, 1, 0, 0, 0, 0, $0 \ldots$	A000004
132	1, 1, 1, 1, 1, 1, 1, 1...	A000012
213	1, 1, 2, 2, 5, 5, 14, 14, 42...	A208355
$231=312$	$1,1,2,3,7,14,37,80,222, \ldots$	
321	$1,1,2,3,7,16,45,111,318 \ldots$	
$\begin{aligned} & \{213,231\}= \\ & \{213,312\} \end{aligned}$	$1,1,2,2,4,4,8,8,16 \ldots$	A016116
\{213, 221$\}$	1, 1, 2, 2, 4, 4, 7, 7, 11..	
$\begin{aligned} & \{231,312\}= \\ & \{231,321\} \end{aligned}$	$1,1,2,3,6,11,22,42,84 \ldots$	
$\{231,312,321\}$	$1,1,2,3,5,8,13 \ldots$	

Crunch the numbers, cross your fingers

Heaps Avoid- ing:	Sequence	OEIS\#
\emptyset	$1,1,2,3,8,20,80,210,896 \ldots$	A056971
123	$1,1,1,0,0,0,0,0 \ldots$	$A 000004$
132	$1,1,1,1,1,1,1,1 \ldots$	$A 000012$
213	$1,1,2,2,5,5,14,14,42 \ldots$	A208355
$231=312$	$1,1,2,3,7,14,37,80,222, \ldots$	
321	$1,1,2,3,7,16,45,111,318 \ldots$	
$\{213,231\}$ $\{213,312\}$$=$	$1,1,2,2,4,4,8,8,16 \ldots$	$A 016116$
$\{213,321\}$	$1,1,2,2,4,4,7,7,11 \ldots$	
$\{231,312\}$ $\{231,321\}$$=$	$1,1,2,3,6,11,22,42,84 \ldots$	
$\{231,312,321\}$	$1,1,2,3,5,8,13 \ldots$	$A 000045$

Heaps Avoiding $(231,312)$

Narayana-Zidek-Capell Numbers:
$1,1,2,3,6,11,22,42,84,165,330, \ldots$

Given by relation:

$$
\begin{aligned}
& a_{n}=2 a_{n-1} \text { if } n \text { even } \\
& a_{n}=2 a_{n-1}-a_{\frac{n-1}{2}} \text { if } n \text { odd }
\end{aligned}
$$

Heaps Avoiding $(231,312)$

Narayana-Zidek-Capell Numbers:
$1,1,2,3,6,11,22,42,84,165,330, \ldots$
Insertion argument:

Heaps Avoiding $(231,312)$

Narayana-Zidek-Capell Numbers:
$1,1,2,3,6,11,22,42,84,165,330, \ldots$
Insertion argument:
Insert $n+1$, but leave it an increasing tree

Heaps Avoiding $(231,312)$

Narayana-Zidek-Capell Numbers:
$1,1,2,3,6,11,22,42,84,165,330, \ldots$
Insertion argument:
Insert $n+1$, but leave it an increasing tree

Heaps Avoiding $(231,312)$

Narayana-Zidek-Capell Numbers:
$1,1,2,3,6,11,22,42,84,165,330, \ldots$
Insertion argument:
Insert $n+1$, but leave it an increasing tree

Heaps Avoiding $(231,312)$

Narayana-Zidek-Capell Numbers:
$1,1,2,3,6,11,22,42,84,165,330, \ldots$
Insertion argument:
Insert $n+1$, but leave it an increasing tree

Heaps Avoiding $(231,312)$

Narayana-Zidek-Capell Numbers:
$1,1,2,3,6,11,22,42,84,165,330, \ldots$
Insertion argument:
Insert $n+1$, but leave it an increasing tree

Heaps Avoiding $(231,312)$

Lemma

The vertex labelled n is always a leaf. After insertion, the vertex labelled $n+1$ is always a leaf.

Heaps Avoiding $(231,312)$

Lemma
In order to avoid 231 and 312, $n+1$ must be inserted directly before n or at the end.

Heaps Avoiding (231, 312): $n+1$ must be right before n, or at end

Proof of Lemma:

- $n+1$ at last leaf: OK
- $n+1$ right before n : OK

Heaps Avoiding (231, 312): $n+1$ must be right before n, or at end

Proof of Lemma:

- If $n+1$ is inserted more before n, we create a 312 .

Heaps Avoiding (231, 312): $n+1$ must be right before n, or at end

Proof of Lemma:

- If $n+1$ is inserted more before n, we create a 312 .

Heaps Avoiding $(231,312): n+1$ must be right before n, or at end

Proof of Lemma:

- If $n+1$ is inserted more before n, we create a 312 .

Heaps Avoiding $(231,312): n+1$ must be right before n, or at end

Proof of Lemma:

- If $n+1$ is inserted more before n, we create a 312 .

Heaps Avoiding (231, 312): $n+1$ must be right before n, or at end

Proof of Lemma:

- If $n+1$ is inserted after n, but not at the end, we create a 231 .

Heaps Avoiding (231, 312): $n+1$ must be right before n, or at end

Proof of Lemma:

- If $n+1$ is inserted after n, but not at the end, we create a 231 .

Heaps Avoiding (231, 312): $n+1$ must be right before n, or at end

Proof of Lemma:

- If $n+1$ is inserted after n, but not at the end, we create a 231 .

Heaps Avoiding $(231,312): n+1$ must be right before n, or at end

Proof of Lemma:

- If $n+1$ is inserted after n, but not at the end, we create a 231 .

Heaps Avoiding $(231,312)$

Easy Case: n is even. So the new leaf is the sibling of a current leaf. Internal nodes stay internal, leaves stay leaves.

Heaps Avoiding $(231,312)$

Easy Case: n is even. So the new leaf is the sibling of a current leaf. Internal nodes stay internal, leaves stay leaves.

We can put $n+1$ at the (new) last leaf, or we can insert it right before n and push everything along.

Heaps Avoiding $(231,312)$

Easy Case: n is even. So the new leaf is the sibling of a current leaf. Internal nodes stay internal, leaves stay leaves.

We can put $n+1$ at the (new) last leaf, or we can insert it right before n and push everything along.
$a_{n}=2 a_{n-1}$.

Heaps Avoiding $(231,312)$

Second Case: n is odd. So the new leaf is child of a former leaf. Is it possible that we push a small label to be a child over a larger label that was a leaf?

Heaps Avoiding $(231,312)$

Inserting $n+1$ at the last leaf: Still OK!

Heaps Avoiding $(231,312)$

Inserting $n+1$ anywhere except the first or last leaf:

Heaps Avoiding $(231,312)$

Inserting $n+1$ anywhere except the first or last leaf:

$$
V V \cdots V_{b} V \cdots
$$

$$
V V \cdots V V_{b}, \cdots
$$

Heaps Avoiding $(231,312)$

Inserting $n+1$ anywhere except the first or last leaf:

We must already have had a 231, namely bna.

Heaps Avoiding $(231,312)$

Inserting $n+1$ at the first leaf:

$$
V V \cdots V_{m u} V V
$$

Heaps Avoiding $(231,312)$

Inserting $n+1$ at the first leaf:

$$
V V \cdots v .
$$

Heaps Avoiding $(231,312)$

Inserting $n+1$ at the first leaf:

$$
V V_{\cdots} \cdot V_{v} \cdot V
$$

We don't want to count this,
even though it may still avoid 231, 312.

Heaps Avoiding $(231,312)$

How many shouldn't we count?
Since n was on the first leaf, all other leaf labels are in decreasing order.

Heaps Avoiding $(231,312)$

How many shouldn't we count?
Since n was on the first leaf, all other leaf labels are in decreasing order.
The subtree obtained by removing all leaves needs to avoid 231,312.

Heaps Avoiding $(231,312)$

How many shouldn't we count?
Since n was on the first leaf, all other leaf labels are in decreasing order.
The subtree obtained by removing all leaves needs to avoid 231,312.
There are $\frac{n-1}{2}$ nodes on that subtree.

Heaps Avoiding $(231,312)$

How many shouldn't we count?
Since n was on the first leaf, all other leaf labels are in decreasing order.
The subtree obtained by removing all leaves needs to avoid 231,312.
There are $\frac{n-1}{2}$ nodes on that subtree.
Thus $a_{n}=2 a_{n-1}-a_{\frac{n-1}{2}}$ when n is odd.

Heaps Avoiding $(231,312)$

How many shouldn't we count?
Since n was on the first leaf, all other leaf labels are in decreasing order.
The subtree obtained by removing all leaves needs to avoid 231,312.
There are $\frac{n-1}{2}$ nodes on that subtree.
Thus $a_{n}=2 a_{n-1}-a_{\frac{n-1}{2}}$ when n is odd.
So we have the same recurrence relation as the Narayana-Zidek-Capell numbers.

Heaps Avoiding 231

Test yourself!

Heaps Avoiding 231

1

Heaps Avoiding 231

1

2

1

Heaps Avoiding 231

1

Heaps Avoiding 231

1

Heaps Avoiding 231

1

the on-line encyclopedia of integer sequences

founded in 1964 by N. J. A. Sloane

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.
$\frac{1,1,2,3,7,14,37,80,222}{\text { Greetings from The On-L ine Encyclopedia of Integer Sequences! }}$ Search Hitts

Search: seq:1,1,2,3,7,14,37,80,222
Sorry, but the terms do not match anything in the table.

If your sequence is of general interest, please submit it using the form provided and it will (probably) be added to the OEIS! Include a brief description and if possible enough terms to fill 3 lines on the screen. We need at least 4 terms.

Search completed in 0.100 seconds
Lookup \mid Welcome $|\underline{\text { Wikj }}|$ Register \mid Music \mid Plot $2 \mid$ Demos \mid Index \mid Browse \mid More \mid WebCam
Contribute new seq. or comment \mid Format \mid Transforms \mid Superseeker \mid Recent \mid More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.
Content is available under The OEIS End-User License Agreement.
Last modified July 8 12:42 EDT 2014. Contains 244265 sequences.

Let's look at where the n appears. (Definitely on a leaf)

Let's look at where the n appears. (Definitely on a leaf)

All the labels before n are less than all labels after n.

Let's look at where the n appears. (Definitely on a leaf)

All the labels before n are less than all labels after n.

The labels on the leaves after n can be arranged in Catalan many ways.

Let's look at where the n appears. (Definitely on a leaf)

All the labels before n are less than all labels after n.

The labels on the leaves after n can be arranged in Catalan many ways.

The subheap before n is a smaller case of a heap avoiding 231 .

Let b_{n} be the number of heaps with n nodes avoiding 231 .

Let b_{n} be the number of heaps with n nodes avoiding 231 .

Let i be the number of leaves after $n .0 \leq i \leq\left\lfloor\frac{n-1}{2}\right\rfloor$.

Let b_{n} be the number of heaps with n nodes avoiding 231 .

Let i be the number of leaves after $n .0 \leq i \leq\left\lfloor\frac{n-1}{2}\right\rfloor$.

$$
b_{n}=\sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} C_{i} b_{n-i-1}
$$

k ary forests avoiding 132

Obvious statements: Each tree avoids 132.

k ary forests avoiding 132

Obvious statements: Each tree avoids 132. The roots of each tree avoid 132.

k ary forests avoiding 132

k ary forests avoiding 132

Lemma

Knowing the roots is enough!

k ary forests avoiding 132

Theorem

The number of forests of t heaps each with v vertices that avoid 132 is given by $\frac{1}{v t+1}\binom{v+1) t}{t}$.

k ary forests avoiding 132

Theorem

The number of forests of t heaps each with v vertices that avoid 132 is given by $\frac{1}{v t+1}\binom{v+1) t}{t}$.

Proof method: Bijection to the number of paths under the line $y=v x$ from $(0,0)$ to $(t, v t)$ using steps $(0,1)$ and $(1,0)$.

Examples of bijection

Examples of bijection

Make a string of the level step heights in reverse order: 4110

Examples of bijection

Make a string of the level step heights in reverse order: 4110 Add one to each element of the string. 5221

Examples of bijection

Make a string of the level step heights in reverse order: 4110 Add one to each element of the string. 5221 The smallest number currently unused in the forest that is greater than or equal to the next element of the string gives the next root.

Examples of bijection

Examples of bijection

8
1

Examples of bijection

Examples of bijection

Make a string, starting with the root of the first heap.

Examples of bijection

Make a string, starting with the root of the first heap.
Repeat the same number in the string for each root as long as the permutation is increasing.

$$
3 \rightarrow 33
$$

Examples of bijection

Make a string, starting with the root of the first heap.
Repeat the same number in the string for each root as long as the permutation is increasing.
If the permutation has a descent, the next root is the next entry in the string.

$$
3 \rightarrow 33 \rightarrow 331
$$

Examples of bijection

Make a string, starting with the root of the first heap.
Repeat the same number in the string for each root as long as the permutation is increasing.
If the permutation has a descent, the next root is the next entry in the string.
Subtract 1 from each element of the string. These are your sequence of level steps. $3 \rightarrow 33 \rightarrow 331 \rightarrow 220$

Examples of bijection

Examples of bijection

Corollary

Let σ be a permutation of length $n m$ composed of a concatenation of m increasing sequences of length n. The number of such σ that avoid 132 is $\frac{1}{n m+1}\binom{n+1) m}{n m+1}$.

Heaps Avoid- ing:	Sequence	OEIS\#				
\emptyset	$1,1,2,3,8,20,80,210,896 \ldots$	A056971				
123	$1,1,1,0,0,0,0,0 \ldots$	A0000004				
132	$1,1,1,1,1,1,1,1 \ldots$	A0000012				
213	$1,1,2,2,5,5,14,14,42 \ldots$	A208355				
$231=312$	$1,1,2,3,7,14,37,80,222, \ldots$	Soon in OEIS!				
321	$1,1,2,3,7,16,45,111,318 \ldots$	OPEN				
$\{213,231\}=$	$1,1,2,2,4,4,8,8,16 \ldots$	A016116				
$\{213,312\}$			\quad	$\{213,321\}$	$1,1,2,2,4,4,7,7,11 \ldots$	A000124
:---	:---	:---				
$\{231,312\}=$	$1,1,2,3,6,11,22,42,84 \ldots$	A002083				
$\{231,321\}$		$A 000045$				
$\{231,312,321\}$	$1,1,2,3,5,8,13 \ldots$					

What about k ary?

Heaps Avoiding:	Sequence	OEIS\#
\emptyset	1, 1, 2, 3, 8, 20, 80, 210, $896 \ldots$	A056971
123	1, 1, 1, 0, 0, 0, 0, $0 \ldots$	A000004
132	1,1,1,1, 1, 1, 1, 1...	A000012
213	1,1,2, 2, 5, 5, 14, 14, 42 ...	A208355
$231=312$	$1,1,2,3,7,14,37,80,222, \ldots$	Soon to be in OEIS!
321	1, 1, 2, 3, 7, 16, 45, 111, 318..	OPEN
$\begin{array}{ll} \{213,231\} & = \\ \{213,312\} \end{array}$	1, 1, 2, 2, 4, 4, 8, 8, 16..	A016116
\{213, 321\}	1,1,2, 2, 4, 4, 7, 7, 11..	A000124
$\begin{aligned} & \{231,312\}= \\ & \{231,321\} \end{aligned}$	$1,1,2,3,6,11,22,42,84 \ldots$	A002083
\{231, 312, 321\}	$1,1,2,3,5,8,13 \ldots$	A000045

What next?

- Trees that aren't heaps

What next?

- Trees that aren't heaps
- Unary-binary, binary, k-ary

What next?

- Trees that aren't heaps
- Unary-binary, binary, k-ary
- Slightly different question: How many permutations avoid σ can be realized as trees?
- Anant Godbole
- Permutation Patterns 2014 Organizers
- UWEC Department of Mathematics
- UWEC Office of Research and Sponsored Programs

References

[1] Yakoubov, Sophia. Pattern Avoidance in in Extensions of Comb-Like Posets. arXiv:1310.2979v2 [math.CO]
[2] Lewis, Joel. Pattern Avoidance for Alternating Permutations and Reading Words of Tableaux. Department of Mathematics MIT (2012): 1-69. June 2012. Web. 22 Aug. 2013
[3] R. Simion and F.W. Schmidt, Restricted Permutations, Europ. J. Comb., 6, 1985, 383-406.

