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Chapter 1

INTRODUCTION

We begin by introducing a variety of terms necessary to further investigate
the problem. First and foremost, a graph is a mathematical relationship
consisting of a nonempty finite set V of vertices and a finite set E of edges
connecting these vertices. The order of graph G is the cardinality n of V (G).
The cardinality m of E(G) is the size of G. A pair of vertices u, vεV are said
to be adjacent if edge uvεE(G). Concordantly, edge uv is incident with

u and v. The degree (deg(v)) of vertex v is the number of vertices adjacent
to v.

A path, denoted Pn, is a graph in which there are two end vertices

(vertices of degree 1), u and v, such that deg(u) = deg(v) = 1, and all other
vertices have degree 2, connecting vertices u and v. An even path is a path
of even order; an odd path is a path of odd order. A cycle, denoted Cn, is
a closed path. In other words, all vertices have degree 2 since end vertices u

and v now have degree 2 with the addition of edge uv. Similarly, an even

cycle is a cycle of even order, while an odd cycle is a cycle of odd order.
A complete graph, denoted Kn, is the graph in which all pairs of vertices
are adjacent. For complete graphs, |E(Kn)| = n(n−1)

2
. For a graph G, when

we can partition V into two disjoint subsets A and B such that every edge
contains exactly one vertex from each subset, G is said to be a bipartite

graph. A complete bipartite graph, denoted Ka,b, graph is a bipartite
graph in which every vertex of set A (|A| = a) is adjacent to every vertex of
B (|B| = b). A star, denoted Sn, is a special complete bipartite graph of the
form K1,n.

The cartesian product of two graphs G and H, denoted G ×H, is the
graph with vertex set V (G)× V (H) such that two vertices (u, v) and (u′, v′)
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are adjacent in G × H if and only if u = u′ and v is adjacent to v′ in H,
or v = v′ and u is adjacent to u′ in G. The hypercube, denoted Qn, is
a recursively defined graph involving the cartesian product with Q1 = K2

and Qn = K2 × Qn−1. In order to obtain the join of two disjoint graphs
G and H, denoted G + H, append edges to each of the n vertices of G to
each and every one of the m vertices of H, a total of mn edges. A 2-mesh,
denoted M(m, n), is the grid formed by the cartesian product of two paths,
M(m, n) = Pm × Pn.

A connected graph is a graph in which any pair of vertices is linked by
a path, resulting in a graph in which there is only one component, or piece.
A tree is a connected acyclic graph. A bridge is an edge in a graph whose
removal increases the number of connected components. A graph G has a
subgraph H if the vertex set V (H) and the edge set E(H) are subsets of
V (G) and E(G) respectively. A spanning subgraph H of G is a subgraph
of G in which V (H) = V (G) and E(H) ⊆ E(G). A spanning tree is
simply a spanning subgraph that is a tree. Two graphs G and H are said to
be isomorphic if there exists a bijection from V (G) to V (H) such that any
two vertices u and v are adjacent in G if and only if the corresponding vertices
are adjacent in H. A graph with a spanning cycle is a hamiltonian graph.
The distance between two vertices u and v, denoted d(u, v), is defined as
the smallest number of edges connecting vertices u and v.

We define a starting state, S, of graph G, such that S ⊂ V (G) is a set
of vertices which are empty. Similarly, a terminal state, T , of graph G, is
a set of vertices with pegs at the end of the game, T ⊂ V (G). To make this
more clear, note that in the typical game, S contains one vertex, the initial
hole, and T contains one vertex, the final peg.

In playing peg solitaire, a peg can jump an adjacent peg if there is an
empty hole adjacent to the jumped peg. The jumped peg is then removed
from the board. In the traditional game, jumps were only allowed to occur in
a linear fashion. We, however, allow jumps to occur in any direction since the
layout of any graph in graph theory is arbitrary. In order to completely solve
a board, or graph, these jumps must continue until only one peg remains.
See Figure 1.1 which shows the solving of P4. Strategy must often be applied
in graphs in which moves are not forced, and in determining the optimum
initial hole location, or the optimum starting state.

A graph is said to be k-solvable if it can be solved down to k pegs. A
1-solvable graph is simply known as solvable. A graph is said to be freely

solvable if it is solvable regardless of where the initial hole is placed. A
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Figure 1.1: Solving P4

1 2 3 4 1 2 3 4 1 2 3 4

move is defined as the series of consecutive jumps of a single peg. In other
words, as long as you hold on to the same peg, every jump you make with
this peg comprises a single move.

Turàn’s Theorem states the following:

Theorem 1.0.1 Let G be any subgraph of Kn such that G is Kr+1-free. Then
the number of edges is at most ( r−1

r
)n2

2
= (1 − 1

r
)n2

2
.

We will need Mantel’s Theorem, which is a special case of Turàn’s The-
orem, for one of our major threshold results. Mantel’s Theorem states the
following:

Theorem 1.0.2 The maximum number of edges in an n-vertex, triangle-free
graph is bn2

4
c.

Also, we mention a necessary condition for a graph to be hamiltonian,
outlined in Dirac’s Theorem as follows:

Theorem 1.0.3 If degG(v) >
n(G)

2
for all vertices vεG, then G is hamilto-

nian.

A key concept utilized throughout this paper is that of the Reverse Game,
discussed in detail later. This concept is introduced by the following theorem.

Theorem 1.0.4 Suppose that S is a starting state of graph G with associated
terminal state T . Define the sets S ′ and T ′ by reversing the roles of “pegs”
and “holes” in S and T , respectively. It follows that T ′ is a starting state of
G with associated terminal state S ′.

Proof. Consider a game that is played in reverse. We begin the Reverse
Game with a set of pegs in T . In the Reverse Game, if xy, yzεE(G) with a
peg in x and holes in y and z then x can jump over y into z, placing a new
peg in y. Clearly, if S is a starting state in the original game with associated
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terminal state T , then the reverse game has terminal state S associated with
T . The Reverse Game is equivalent to the original game. Reversing the roles
of “pegs” and “holes” obtains the desired result.



Chapter 2

SIMPLE SOLVING

CONCEPTS

In this paper, we will only view connected graphs, or graphs with only one
component, because clearly any disconnected graph would not be solvable.
We begin by considering the solving of very simple types of graphs, such as
complete graphs, stars, paths, and cycles, and then examining very logically
the solving of combinations of graphs under operations, such as the join and
cartesian product. Consider the complete graph, Kn.

Proposition 2.0.5 Complete graphs, Kn, are freely solvable for any value
of n.

Proof. In Kn, all vertices are vertex transitive (all vertex labelings are
equivalent), and all vertices are adjacent to all others. Hence, there is always
a pair of adjacent vertices adjacent to a hole to allow jumping, until, there
is only one peg remaining. Hence, Kn is solvable for any starting state, or
freely solvable.

Next, consider stars (Sn).

Theorem 2.0.6 Sn is not solvable for any value of n ≥ 3 and any starting
state.

Proof. For Sn, there are essentially two choices for the initial hole. You can
either put the initial hole in the central vertex, or in one of the peripheral
vertices (which are all vertex transitive). If the hole begins in the central

15
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Figure 2.1: S8

vertex, there are no adjacent pegs to jump with. If you put the hole in one
of the peripheral vertices, you can jump from one of the other peripheral
vertices across the central vertex into the hole. But now you are left with
a hole in the central vertex, which leaves no adjacent pegs to jump with.
Hence, Sn is not solvable.

We next consider paths and cycles. More specifically, we consider even
paths, odd paths, even cycles, and odd cycles. In this investigation, we em-
ploy a very important concept which is a foundation to further investigations.

Theorem 2.0.7 If a spanning subgraph H of G is k-solvable, then G is at
worst k-solvable.

Proof. Given graph H is k-solvable. Since H is a spanning subgraph of G,
we know V (H) = V (G) and E(H) ⊆ E(G). Take G and solve it only on the
edges uvεE(H), which we know to be k-solvable since H is k-solvable on the
edges uvεE(H). The additional edges of G may or may not allow further
solving. Hence, we are satisfied to say G is at worst k−solvable.

This theorem allows for multiple proofs of other results, such as Corollary
2.0.10.

Theorem 2.0.8 P2n is solvable with the initial hole in slot 2 or n for n = 2
and n > 3. For initial hole in slot 2n − 1, the final peg ends in slot 2.

Proof. Label vertices 1, 2, ..., 2n in the obvious way. Proceed by induction
on n. For n = 2, place the initial hole in slot 2n − 1 = 3. Jump from 1 to 3.
Holes are now in slots 1 and 2. Now jump from 4 to 2 and we are done. See
Figure 2.2.

Assume that P2n is solvable with starting position 2n − 1 for some n.
Look at P2(n+1) with the starting hole in slot 2n + 1. See Figure 2.3.

Jump from 2n − 1 into 2n + 1. Now we have holes in 2n and 2n − 1.
Jump from 2n + 2 into 2n, and we are left with holes in slots 2n + 2, 2n + 1,
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Figure 2.2: Solving P4

1 2 3 4 1 2 3 4 1 2 3 4

Figure 2.3: Solving P2n+2

1 2 3 2n − 1 2n 2n + 1 2n + 2

1 2 3 2n − 1 2n 2n + 1 2n + 2

1 2 3 2n − 1 2n 2n + 1 2n + 2

and 2n − 1. Ignoring slots 2n + 2 and 2n + 1, which are empty, we are left
with P2n with a hole in slot 2n−1. This, though, is solvable by the inductive
hypothesis. Thus, the result holds.

Notice that n must be greater than 1, or else we would consider the trivial
case, P2. For n = 3, P6 is solvable only when the initial hole is in slot 2. For
n ≥ 3, when placing the initial hole in slot 2, the final peg ends up in slot
2n − 4 or 2n − 1. As for odd paths, trivially we know P1 is solvable. Also,
P3 is solvable with initial hole at one of the two end vertices. We now define
distance 2-solvable as a graph which is 2-solvable where d(u, v) = 2 where
u and v are the final two pegs.

Theorem 2.0.9 P2n+1 is distance 2-solvable with initial hole at slot 2n, n ≥
2. Further, the final two pegs fall into holes 1 and 3.

Proof. Proceed by induction on n. For n = 2, the initial hole is placed in
position 4. First jump from slot 2 to 4, then from 5 to 3. Pegs are left in
slots 1 and 3 with the remaining vertices left as holes. Clearly, d(v1, v3) = 2.
See Figure 2.4.

Assume the result holds for some n. Now consider P2(n+1)+1 = P2n+3. See
Figure 2.5.
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Figure 2.4: Solving P5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Figure 2.5: Solving P2n+3

1 2 3 2n 2n + 1 2n + 2 2n + 3

1 2 3 2n 2n + 1 2n + 2 2n + 3

1 2 3 2n 2n + 1 2n + 2 2n + 3

Jump from 2n to 2n + 2 (the initial hole). Then, jump from 2n + 3 to
2n+1. The remaining graph is P2n+1 with a hole in slot 2n. This is distance
2-solvable by the inductive hypothesis. Thus, the result holds.

Corollary 2.0.10 C2n is freely solvable. C2n+1 is distance 2-solvable with
d(u, v) = 2, where u and v are the two remaining vertices with pegs.

Proof. Take C2n and delete one edge, resulting in P2n which is solvable with
the initial hole in slot 2n − 1 by the Theorem 2.4. Placing the edge back in,
the labeling becomes irrelevant, as the vertices are vertex transitive. Hence,
C2n is freely solvable.

Similarly, delete one edge from C2n+1, resulting in P2n+1, which again,
is distance 2-solvable by the above theorem, with the initial hole placed in
slot 2n. However, re-inserting the deleted edge makes the graph again vertex
transitive, removing the importance of the labeling. Hence, C2n+1 is distance
2-solvable.

OR
Note that P2n is a spanning subgraph of C2n. Since P2n is solvable for

certain initial hole conditions, by Theorem 2.0.7, we know C2n is at least
solvable for these initial hole conditions. However, since C2n is cyclic and
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vertices are vertex transitive, the labeling of the initial hole conditions be-
comes irrelevant. Therefore, C2n is freely solvable.

Similarly, note that P2n+1 is a spanning subgraph of C2n+1. Since P2n+1 is
distance 2-solvable for certain initial hole conditions, by Theorem 2.0.7, we
know C2n+1 is at worst distance 2-solvable for these initial hole conditions.
However, since C2n+1 is cyclic and vertices are vertex transitive, the labeling
of the initial hole conditions becomes irrelevant. Therefore, C2n+1 is distance
2-solvable.

The question remains, however, of whether or not an odd path/cycle is
solvable. We have proved they are both 2-solvable, but would a more clever
strategy leave the graphs with only one peg? We look to diffuse this question
now. We define an empty bridge as a bridge in which the two edge vertices
have degree two and are holes. Observe that a single peg adjacent to nothing
but empty bridges is stranded (Figure 2.6).

Figure 2.6: Stranded Peg

Theorem 2.0.11 The path P2n+1, n ≥ 2, is not solvable.

Proof. Note for the odd path in its starting state, there are an even number
of pegs and a single hole. No matter where we choose to place the initial
hole, we divide the 2n pegs into two groups. These groups must necessarily
be both even or both odd. In both cases, the first move jumps with two
pegs from one group, removing them and adding one peg to the other group.
In the case in which the groups are both even, the group with the jumping
pegs remains even, then there is an empty bridge, then an odd group of pegs.
If both groups are odd, the first move keeps the jumping group odd while
changing the other group to having an even number of pegs, connected by an
empty bridge. In both cases, after the first jump, there is an empty bridge
in between an odd number of pegs and an even number of pegs.

Observe that any jump requires two pegs. Also, on the path, note that
each jump results in the formation of a new empty bridge. In order to solve
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the odd path, we attempt to link the set of even pegs with the set of odd pegs
by jumping back across the bridge from both sides. Since we know one set of
pegs is odd, let the number of pegs on this side of the empty bridge formed
by the first move be represented by 2v + 1 for some vε{0, 1, 2, ...}. After v

moves, we will necessarily be left with one peg adjacent to only an empty
bridge, which, by observation, represents a stranded peg. Hence, P2n+1 is
not solvable.

Theorem 2.0.12 C2n+1 is not solvable.

Proof. Similar to the odd path, the odd cycle, in its starting state, consists
of an even number of pegs and a single hole. After the forced first move,
there is an empty bridge (note here that the empty “bridge” deletion does
not disconnect the graph) surrounded by an odd number of pegs. After the
next move, which is forced, we are left with an empty bridge (call it ab)
adjacent on one side to a single peg, a hole, and an odd number of pegs
which are adjacent with the other side of the empty bridge. If we ignore
empty bridge ab, we are left with an odd path, which we know is not solvable
by Theorem 2.0.11 (See Figure 2.7).

Figure 2.7: Attempting to Solve C2n+1

even odd odd

a

b

Assume we use hole a. We attack from the left by making two jumps
ending in hole a. We are left with a series of four empty holes (two empty
bridges) adjacent to, essentially, an odd path. If we ignore the four empty
holes, we are left with an odd path, which we know is not solvable by Theorem
2.0.11. If we jump into one of the four empty holes, we will necessarily leave
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a single peg surrounded on both sides by empty bridges (since, like paths,
each jump creates a new empty bridge), which is stranded (See Figure 2.8).

Figure 2.8: Attempting to Solve C2n+1

a

b

odd

Instead, assume we use hole b. By jumping into hole b, it is adjacent on
the right by an empty bridge, hence it is “stranded” from this side. So, by
deciding to use hole b, we must also use hole a, or else b is stranded. Hence,
we attempt to jump into a from the left by a series of two moves as above.
We now have pegs in a and b with holes adjacent to both a and b. If we
jump from b over a, the resulting peg would be surrounded on both sides by
empty bridges, and thus, stranded. Instead, we jump from a over b. This
results in a group of six consecutive holes adjacent to an odd path. If we
choose not to use the six holes, we are left with an odd path, which again, is
not solvable by Theorem 2.0.11. If we jump into one of the six empty holes,
we necessarily leave a single peg surrounded on both sides by empty bridges,
which is stranded. See Figure 2.9. Hence, C2n+1 is not solvable.
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Figure 2.9: Attempting to Solve C2n+1

a

b

odd

a

b

odd

Theorem 2.0.13 Given freely solvable (solvable) graph G, the cartesian prod-
uct G × K2 is freely solvable (solvable).

Proof. Note that G × K2 is essentially two copies of G, call them G1 and
G2, with corresponding vertices connected. Let (G1, a) represent vertex a of
G1. Call the vertex in G in which the final peg ends v for initial hole u. See
Figure 2.10.

Figure 2.10: Solving G × K2

G1
S1

G2

a b t u v
G1

S2
G2

a b t u v

G1
S3

G2

a b t u v
G1

S4
G2

a b t u v

G1
T

G2

a b t u v
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Let the initial hole be in (G1, u), shown by S1. Solve G1, leaving the final
peg in (G1, v), shown by S2. Jump from (G2, v) over (G2, u) into (G1, u),
shown by S3. Next, jump from (G1, u) over (G1, v) into (G2, v). This leaves
G2 with a hole in u, shown by S4. Solve G2, solving the graph, shown by T .

Corollary 2.0.14 Qn, n ≥ 2, is freely solvable.

Proof. Note Qn is given by Qn−1 × K2. We proceed by induction on n.
Trivially, Q0 and Q1 are freely solvable. For n = 2, Q2 = Q1 ×K2. Pick any
vertex as the initial hole since vertices of Qn are vertex transitive. Pick vertex
b without loss of generality. See Figure 2.11. After two moves, Q2 is solved

Figure 2.11: Solving Q2

a

d

b

c

a

d

b

c

a

d

b

c

down to one peg. Therefore, the result holds for n = 2 (equivalently, note
Q2 = C4, which is solvable by Corollary 2.0.10). Assume the result holds for
some n. Hence, Qn = Qn−1 × K2 is freely solvable. We look to see if the
result holds for n+1. By definition, Qn+1 = Qn×K2 by definition. And, Qn

is freely solvable by the inductive hypothesis. So, by Theorem 2.0.13 above,
Qn+1 is also freely solvable. Hence, the result holds for n ≥ 2.

Figure 2.12: Q3
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Theorem 2.0.15 Given freely solvable graphs G and H, G + H is freely
solvable.

Proof. Consider G+H with one hole. Since any hole (vertex) can be viewed
as being part of G or H, without loss of generality view the hole as part of
G. Since G is freely solvable, proceed to solve G. Once G is solved, take a
peg from H, jump over the last peg in G and into an adjacent hole in G.
Now, we have one peg in G and one hole in H. Take the peg in G, jump
over a peg in H which is adjacent to the lone hole in H, and into the lone
hole in H. Now, you are left with graph H with one hole. Since H is freely
solvable, you can solve the remaining portion of G + H. Hence, the result
holds.

Theorem 2.0.16 If G and H are even cycles, G × H is freely solvable.

Proof. Let G have order m and H have order n such that m and n are of
the form 2 + 2k for some k = {0, 1, 2, ...}. Consider G × H with one hole.
Since G and H are freely solvable, without loss of generality view the hole
as if it belongs to G. Specifically, view the hole as it is in the first copy of G,
call this G1. Solve G1. Take a peg from G2 which corresponds to the final
peg in G1, jump the last peg in G1, and land in an adjacent hole in G1. Now,
jump from G1 into G2 by landing in the lone hole of G2. We are now left
with n− 2 copies of G completely filled with pegs, one copy of G completely
empty (G1), and one copy of G with one hole (G2). Repeat this process n−2
times followed by a solving of the final copy of G, Gn. G × H is now solved
down to one peg. Hence, the result holds. See Figure 2.13.
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Figure 2.13: Solving G ×H

G1 G2 Gn−1 Gn

H1

H2

Hm−1

Hm

G1 G2 Gn−1 Gn

H1

H2

Hm−1

Hm

G1 G2 Gn−1 Gn

H1

H2

Hm−1

Hm

G1 G2 Gn−1 Gn

H1

H2

Hm−1

Hm
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Chapter 3

IMPROVED SOLVING

We now employ further knowledge of graph theory in analyzing the solvability
of graphs as opposed to a more brute force, purely logical analysis as above.
Using the above results, we present these new results which give more truths
concerning the solvability of generic graphs given certain requirements.

Theorem 3.0.17 i) If G is hamiltonian and has even order, it is freely
solvable.

ii) If G is hamiltonian and contains a triangle, it is solvable.

Proof. i) Since G is hamiltonian and of even order it has C2n as a spanning
subgraph. This is freely solvable by Theorem 2.0.7.

ii) We are done if G has even order by above. Without loss of generality,
assume G is of odd order. Since G is hamiltonian, it has C2n+1 as a spanning
subgraph. Solve on the subgraph in such a way that the two final pegs are on
two vertices of a triangle. Then, jump along the triangle, solving the graph.

Corollary 3.0.18 If degG(v) >
n(G)

2
for all vεV (G), then G is solvable.

Proof. Given degG(v) >
n(G)

2
, which implies G is hamiltonian by Theorem

1.0.3. So, if G has even order, we are done by above. If not, the number of
edges in G is

e(G) ≥
n(G)δ(G)

2
>

n(G)2

4
.

27
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Therefore, G has a triangle by Mantel’s Theorem. Thus, G is hamiltonian
and contains a triangle, which is solvable by Theorem 3.0.17.

Theorem 3.0.19 K2,m is freely solvable for m ≥ 2 (solvable for m = 1).

Proof. Let vertex set by X ∪ Y where X = {a, b}, Y = {1, 2, ..., m}. If
initial hole is placed in X, proceed by induction on m. If m = 1, then
K2,m = P3, which is solvable. If m = 2, then K2,m = C4, which is freely
solvable. Suppose this is true for some m. Consider K2,m+1. Jump from a

over m+1 to b. Ignore hole at slot m+1. The remaining graph is K2,m with
a hole in X, which is solvable by the inductive hypothesis. See Figure 3.1.

Figure 3.1: Solving K2,n, initial hole in X
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Now suppose the initial hole is in Y . Without loss of generality, let the
initial hole be in slot m−1. Jump from m+1 over a into m−1. Ignore hole
at m + 1. Remaining graph is K2,m with a hole at a, which is solvable. See
Figure 3.2.
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Figure 3.2: Solving K2,n, initial hole in Y
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Hence, the result holds.

Theorem 3.0.20 Kn,m is freely solvable (n ≥ 2, m ≥ 2).

Proof. Proceed by induction on n. If n = 2, K2,m is freely solvable for all
m by above. Suppose Kn,m is freely solvable for some n ≥ 2.

V = X ∪ Y

|X| = n, |Y | = m

Consider Kn+1,m

X = {x1, ..., xn, xn+1}

Y = {y1, ..., ym}

If initial hole is in X (say xn), jump from xn+1 over ym−1 to xn. Ignoring
the hole in xn+1, remaining graph is Kn,m, which is solvable by the inductive
hypothesis. See Figure 3.3.
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Figure 3.3: Solving Kn,m, initial hole in X
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If initial hole is in Y (say ym−1), jump from ym over xn+1 to ym−1. Ignoring
the hole in xn+1, the remaining graph is Kn,m with a hole in Y , which is
solvable by the inductive hypothesis. See Figure 3.4. Thus, the result holds.
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Figure 3.4: Solving Kn,m, initial hole in Y
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Corollary 3.0.21 Let G, H be graphs with more than two vertices each.
G + H is freely solvable.

Proof. G+H has Kn(G),n(H) as a spanning subgraph, which is freely solvable
by above.

Previously, we proved that the cartesian product of any two even cycles
was freely solvable. We now prove that any 2-mesh, a spanning subgraph of
the cartesian product of two even cycles, is solvable.

Theorem 3.0.22 M(m, n) is solvable.

Proof. We must consider three cases for this proof. First, the case in which
m and n are both even. Second, the case in which, without loss of generality,
m is odd and n is even. Lastly, the case in which both m and n are odd. Let
(x, y) represent the vertex generated by xεV (Pm) and yεV (Pn).

Case 1: Suppose m and n are both even. Begin with the initial hole in
(1, 3). Jump from (2, 2) over (1, 2) into (1, 3). We now have holes in vertices
(1, 2) and (2, 2). We know we can solve each of these paths independently,
resulting in a single peg in each path at location n − 1 by Theorem 2.0.8.
These two pegs are clearly adjacent, and we can jump them in any way if
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these are the last pair of two paths. However, if there is another pair of
two paths, we must continue and reproduce this solving possibility. Jump
from (1, n − 1) over (2, n − 1) into (2, n − 2). Then, jump from (4, n − 1)
over (3, n − 1) into (2, n− 1). Next jump from (2, n − 2) over (3, n− 2) into
(3, n − 1). Finally, jump from (2, n − 1) over (3, n − 1) into (3, n − 2). This
leaves vertical paths three and four with holes in slots n− 1, or equivalently,
with different labeling, the second slots of each path. Again, we know we
can solve these paths independently, leaving pegs adjacent in hole 2 (or n−1
depending on your labeling). If this was the last pair of paths, we have two
adjacent pegs, which we can finish solving. If not, repeat the process for each
pair of paths, eventually solving the 2-mesh. See Figure 3.5.

Case 2: Without loss of generality, suppose m odd and n even. Begin as
in the same as Case 1. We can solve each pair of paths in the exact same
way. However, when we no longer have a pair of paths to solve, and only
a single path remaining, our plan for solving must deviate. In vertical path
m − 1, we end up with a peg in slot n − 2 (or 3). Jump from (m, n − 2)
over (m− 1, n− 2) into (m− 1, n − 1). Then jump from (m− 1, n− 1) over
(m, n− 1) into (m, n− 2). This leaves the last, even path with a hole in slot
n − 1 (or 2) which we know is solvable. Hence, the 2-mesh is solved. See
Figure 3.6.

Case 3: Suppose m and n are both odd. Begin as in Case 1, with the ini-
tial hole (1, 3). Jump from (2, 2) over (1, 2) into (1, 3). We now have holes in
vertices (1, 2) and (2, 2), which we know each path is independently distance
2-solvable with final pegs landing in locations n and n− 2 by Theorem 2.0.9.
Solve each path independently. Then solve the set of four pegs in such a way
that the final peg of the four lands in (2, n − 1). Next jump from (3, n − 1)
over (2, n − 1) into (2, n − 2). Finally, jump from (2, n − 2) over (3, n − 2)
into (3, n − 1). This leaves the third vertical path with a hole in location
n− 2 (or 3, depending on labeling). We can repeat this process for each pair
of vertical paths until there are only 5 paths remaining.

When there is a hole in (m−4, 3), as similar to above, jump from (m−3, 2)
over (m−4, 2) into (m−4, 3). Again, 2-solve these two paths independently.
Solve this set of four pegs and two holes such that the final peg of the four
lands in vertex (m− 4, n− 1). Then, jump (m− 1, n− 1) over (m− 2, n− 1)
into (m − 3, n − 1). Now jump from (m − 4, n − 1) over (m − 3, n − 1) into
(m−3, n). We next make a series of four jumps. First, jump from (m, n) over
(m, n−1) into (m−1, n−1). Next, jump from (m−1, n) over (m−1, n−1)
into (m − 2, n − 1). Third, jump from (m − 2, n) over (m − 2, n − 1) into
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Figure 3.5: Solving the 2-mesh, m & n even
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Figure 3.6: Solving the 2-mesh, m odd, n even
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(m−3, n−1). Finally, jump from (m−3, n−1) over (m−3, n) into (m−2, n).
This leaves vertical path m−2 with a hole in vertex n−1 and vertical paths
m − 1 and m with holes in vertices n − 1 and n. Path m − 2, we know,
is 2-solvable with the final two pegs ending in slots 1 and 3. Ignoring the
bottom holes, which are empty, of paths m − 1 and m, these paths are of
even order with holes in location “n”. All even paths with this starting state
will solve down to pegs in slots 1, 4, 6, 8, 10, ... n. If the “even” paths (we
created by ignoring the hole in actual slot n) are of order 4k, for some kεN,
jump left, from (m, n−1) over (m−1, n−1) into (m−1, n−2). Then jump
from (m − 1, n − 3) over (m − 1, n − 2) into (m, n − 2). Next, jump from
(m, n − 2) over (m, n − 3) into (m, n − 4). Now, jump from (m, n − 5) over
(m, n−4) into (m−1, n−4). Then jump from (m−1, n−4) over (m−1, n−5)
into (m − 1, n − 6). Continue this back-and-forth, up-and-down pattern of
jumping until eventually there is a peg in vertex (m − 1, 3). If the “even”
paths are of order 4k + 2, for some kεN, jump right first, from (m− 1, n− 1)
over (m, n − 1) into (m, n − 2). Continue in the same pattern until there is
a peg in vertex (m − 1, 3). Next, jump from (m − 1, 3) over (m − 2, 3) into
(m− 2, 2), leaving just four pegs. We can proceed to make three jumps in a
counterclockwise fashion to finish solving. Namely, jump first from (m−2, 1)
over (m − 2, 2) into (m − 1, 2). Then, jump from (m − 1, 1) over (m − 1, 2)
into (m, 2). Finally, jump from (m, 2) over (m, 1) into (m− 1, 1). See Figure
3.7 and Figure 3.8.
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Figure 3.7: Solving the 2-mesh, m & n odd
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Figure 3.8: Solving the 2-mesh (continued), m & n odd
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Hence, any 2-mesh is solvable.

Theorem 3.0.23 Given solvable graphs G and H, the cartesian product G×
H is solvable.

Proof. If H = K1, G × H = G which is solvable by hypothesis. If H = K2,
we know G × H is solvable by Theorem 2.0.13. Without loss of generality,
assume n(G) ≥ 3, n(H) ≥ 3. We know there exist some vertices a and z in
which the G is solvable with a as its initial hole and z as the final peg location.
We are also guaranteed vertices b, c, x, and y such that ab, bc, xy, yzεE(G).
The first move we have constructed is jumping c over b into a; the last move
is made by jumping x over y into z. Similarly, we know H is solvable starting
at u ending at location v. In H, u is adjacent to u′ and v is adjacent to v′.
Let Gh be the copy of G generated by hεV (H) and Hg be the copy of H

generated by gεV (G). Also, let (g, h) be the vertex in G × H generated by
gεV (G) and hεV (H).

Start with initial hole in (a, u). Since H is solvable starting at u, solve
Ha ending at (a, v). Note all copies of G have a hole in a except Gv.

We now make the following series of moves (see Figure 3.9):

1. Jump from (b, v) over (a, v) into (a, v′);

2. Jump from (c, v′) over (b, v′) into (b, v).

Figure 3.9: Solving G × H
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Result: Gv′ has holes in (b, v′) and (c, v′) with pegs elsewhere. This is
the state of G after our stated initial jump of c over b into a. Hence, Gv′ is
solvable with final peg landing in (z, v′). Gv is also solvable, since it has a
single hole in vertex (a, v) with pegs elsewhere.
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Now, all copies of G have holes in a (except Gv′). Solve them indepen-
dently, except Gu′ , ending in z each time. Also solve Gv′ ending in (z, v′) by
above.

As for Gu′ , solve it in such a way that pegs end in locations (x, u′) and
(y, u′).

We now make the following series of moves (see Figure 3.10):
1. Jump from (x, u′) over (y, u′) into (y, u);
2. Jump from (y, u) over (z, u) into (z, u′).

Figure 3.10: Solving G ×H
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Result

Result: Hz has a hole in (z, u), pegs elsewhere. All other copies of H are
empty.

Since Hz is solvable from (z, u), we solve it (ending in (z, v)), completing
the proof.

Theorem 3.0.24 Suppose G is solvable (as described in Theorem 3.0.23)
and H is distance 2-solvable starting in u ending in v1, v3. G×H is solvable.

Proof. Start with initial hole in (a, u). Let u1 and u2 be vertices of H in
the initial move. Since Ha is 2-solvable starting at u ending at v1, v3 (v2 is
adjacent to v1 and v3 in H), distance 2-solve Ha. Now all copies of G have a
hole at a except Gv1

and Gv3
.

We now make the following series of moves (see Figure 3.11):
1. Jump from (c, v2) over (b, v2) into (a, v2);
2. Jump from (b, v1) over (c, v1) into (c, v2);
3. Jump from (a, v3) over (a, v2) into (b, v2).



40

Figure 3.11: Solving G × H (H distance 2-solvable)
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Result: Pegs in (a, v1), (b, v2), (b, v3), (c, v2), (c, v3); holes in (a, v2), (a, v3),
(b, v1), (c, v1).

Now, all copies of G have holes in a (except Gv1
). Hence, they are solvable.

Gv1
is similarly solvable, as it has holes in (b, v1), (c, v1) and pegs elsewhere.

Solve each copy of G independently, ending with the final two pegs in x

and y, which are adjacent. The result is two copies of H (Hx and Hy) filled
entirely with pegs. All other copies of H are completely empty, including
Hz .

We now make the following series of moves (see Figure 3.12):
1. Jump from (x, u) over (y, u) into (z, u);
2. Jump from (y, u2) over (y, u1) into (z, u1);
3. Jump from (z, u1) over (z, u) into (y, u).
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Figure 3.12: Solving G ×H (H distance 2-solvable)
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Result: Hx has a hole in (x, u), pegs elsewhere. It is distance 2-solvable
ending in {(x, v1), (x, v3)}. Since Hy has holes in (y, u1) and (y, u2), it is
distance 2-solvable ending at {(y, v1), (y, v3)}.

Now, final four pegs are in (x, v1), (x, v3), (y, v1), and (y, v3).
We now make the following series of moves (see Figure 3.13):
1. Jump from (y, v1) over (x, v1) into (x, v2);
2. Jump from (x, v3) over (y, v3) into (y, v2);
3. Jump from (x, v2) over (y, v2) into (y, v1).
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Figure 3.13: Solving G × H (H distance 2-solvable)
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Result: One peg in (y, v1). Hence, G × H is solved.

After realizing our inability to show the general result that the cartesian
product of any solvable graph with any unsolvable graph is solvable, we next
present an explicit example of the solvability of the cartesian product of a
solvable graph and an unsolvable graph, namely P2m × Sn.

Theorem 3.0.25 The cartesian product of the even path and the star (P2m×
Sn) is solvable.

Proof. In order to solve P2m × Sn, we break up the graph into prisms of
stars, solving two stars at a time. Let vertex (a, 1) represent vertex a of the
first star. Let (1, i) represent the central vertex of the ith star. Begin with the
initial hole in vertex (1, 1). Jump from (a, 2) over (1, 2) into (1, 1). Similarly,
jump from (a, 1) over (1, 1) into (1, 2). This series of two jumps takes the
first two copies of Sn and turns them both into Sn−1. After n series of these
two jumps, the first two stars are empty entirely except for a lone peg (1, 2).



43

Figure 3.14: Solving P2m × Sn
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Next, jump from (1, 3) over (c, 3) into (c, 2). Then jump back from (1, 2)
over (c, 2) into (c, 3). This leaves the first two stars completely empty and a
single hole in the central vertex of the third star, vertex (1, 3). From here,
we can follow the same algorithm to eliminate pegs completely from the
third and fourth stars. Since we crossed the star with an even path, we can
continue to solve the stars in sets of two, eventually ending with a single peg
in the last star. Hence, P2m × Sn is solvable.



44

Figure 3.15: Solving P2m × Sn
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We next present the solvability of the cartesian product of, essentially,
two distance 2-solvable graphs, namely Pn × S3.

Theorem 3.0.26 The cartesian product of any path and S3, Pn × S3, is
solvable, n ≥ 3.

Proof. Observe first that if n is even, then Pn × S3 is solvable by Theorem
3.0.25 above. Hence, we will examine the case in which n is odd. Let (n, 1)
denote a vertex of the first star. Let (c, i) represent the central vertex of the
ith star. Again, begin with the initial hole in the central vertex of the first
star, vertex (c, 1). Solve pairs of stars exactly as above. When there are only
three stars remaining (solving the same way as above will produce a hole in
the central vertex of the third-to-last star), our solving strategy deviates.

Call the three remaining stars X, Y , and Z. By this labeling, we are left
with n−3 copies of S3 completely empty, X with a hole in the central vertex,
and both Y and Z completely filled with pegs. Jump from (1, y) over (c, y)
into (c, x). Next jump from (c, z) over (1, z) into (1, y). See Figure 3.16.
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Figure 3.16: Solving Pn × S3
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We now begin making a series of two jumps first from left to right, then
right to left. More explicitly, first jump from (1, x) over (c, x) into (c, y).
Then, jump from (1, y) over (c, y) into (c, z). Next, make similar jumps back
right to left, from (3, z) over (c, z) into (c, y) then from (3, y) over (c, y) into
(c, x). One more time, make similar jumps back across left to right. First,
jump from (3, x) over (c, x) into (c, y). Then, jump from (2, y) over (c, y)
into (c, z). Next, jump from (c, z) over (2, z) into (2, y). Finally, jump from
(2, x) over (2, y) into (c, y). See Figure 3.17. Hence, the graph is solved and
the result holds.
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Figure 3.17: Solving Pn × S3
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Lastly, we present the solvability of any two distance 2-solvable graphs.

Theorem 3.0.27 Suppose G and H are both distance 2-solvable graphs. G

is distance 2-solvable for initial hole a, leaving pegs in x1 and x3. H is
distance 2-solvable for initial hole u1, leaving pegs in v1 and v3.

Proof. Let vertex (x, y) represent the vertex generated by xεG and yεH.
Begin with initial hole in (a, v1). Make the following series of moves (see
Figure 3.18):

1. Jump from (b, v2) over (b, v1) into (a, v1);
2. Jump from (c, v1) over (c, v2) into (b, v2);
3. Jump from (b, v3) over (c, v3) into (c, v2).

Figure 3.18: Solving G × H (G & H distance 2-solvable)
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Result: Holes in (b, v3), (c, v3), (b, v1), and (c, v1).
Now, there are two consecutive holes in Gv1

and Gv3
representing the two

holes formed after the first jump into a of a solving of G. Solve Gv1
and Gv3

independently leaving pegs in (x1, v1), (x3, v1), (x1, v3), and (x3, v3).
We now make the following series of moves (see Figure 3.19):
1. Jump from (x1, v2) over (x1, v1) into (x2, v1);
2. Jump from (x3, v2) over (x3, v3) into (x2, v3);
3. Jump from (x2, v3) over (x1, v3) into (x1, v2);
4. Jump from (x2, v1) over (x3, v1) into (x3, v2).



49

Figure 3.19: Solving G × H (G & H distance 2-solvable)
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Result: All copies of H have holes in v1 and v3. By duality, we can solve
these copies ending in u1. Instead, we solve them leaving the final jump to
be made, leaving holes in u2 and u3. (u1 adjacent to u2 adjacent to u3)

We now make the following series of moves (see Figure 3.20):
1. Jump from (c, u2) over (b, u2) into (b, u1);
2. Jump from (a, u3) over (a, u2) into (a, u1);
3. Jump from (b, u1) over (a, u1) into (a, u2).
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Figure 3.20: Solving G × H (G & H distance 2-solvable)
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Result

Result: The only pegs remaining are in Gu2
and Gu3

. Gu3
has a single

hole in a, vertex (a, u3). Gu2
has two holes in b and c, vertices (b, u2) and

(c, u2), representing the state of G after the initial jump.
Proceed to distance 2-solve Gu2

and Gu3
. This leaves only four pegs, in

vertices (x1, u2), (x1, u3), (x3, u2), and (x3, u3).
We now make the following series of moves (see Figure 3.21):
1. Jump from (x3, u2) over (x3, u3) into (x2, u3);
2. Jump from (x1, u3) over (x1, u2) into (x2, u2);
3. Jump from (x2, u3) over (x2, u2) into (x2, u1).
Result: The graph G × H is solved.
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Figure 3.21: Solving G × H (G & H distance 2-solvable)
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Chapter 4

RELATED GAMES

We define the Reverse Game as the game in which the exact opposite of the
typical peg solitaire play occurs. In other words, a peg will jump over a hole
into a hole, turning the jumped hole into a peg. In this game, with each
move, the number of pegs goes up and the number of holes goes down, until
at best there are n−1 pegs on a graph of order n and one hole. On the other
hand, in the original game, with each move, the number of pegs went down
and the number of holes went up until, at best, there was one peg and n− 1
holes. The reverse game is equivalent to viewing the empty holes as pegs
and the pegs as holes and playing in the original way, only with opposite
titles. It can also be thought of as playing the original game backwards,
starting with a single peg and building back up the board. Through this
thinking, we can see a clear bijection from the reverse game to the original
game. This leads us to the big result of this section, showing the equivalence
of starting and terminal states. In other words, if a graph is solvable starting
at u ending at v, it is also solvable starting at v ending at u. Figure 4.1
shows the equivalency of the reverse game to the original game in P3.

Figure 4.1: Dually Solving P3

Original Reverse
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Though the following theorem is both stated and proved in the introduc-
tion, it is also explicitly stated here for emphasis and relevance reasons.

Theorem 4.0.28 Suppose that S is a starting state of graph G with asso-
ciated terminal state T . Define the sets S ′ and T ′ by reversing the roles of
“pegs” and “holes” in S and T , respectively. It follows that T ′ is a starting
state of G with associated terminal state S ′.

Proof. Consider a game that is played in reverse. We begin the Reverse
Game with a set of pegs in T . In the Reverse Game, if xy, yzεE(G) with a
peg in x and holes in y and z then x can jump over y into z, placing a new
peg in y. Clearly, if S is a starting state in the original game with associated
terminal state T , then the reverse game has terminal state S associated with
T . The Reverse Game is equivalent to the original game. Reversing the roles
of “pegs” and “holes” obtains the desired result.

This result is very important and useful in the tree progenation that
comes in the next section.

We now invent another game, the Bipartite Game. In this game, we
have four distinct types of vertices, labeled 4, 3, 1, and 0. The ‘4’ vertices
represent the set of independent vertices filled entirely with pegs. The ‘3’
vertices represent the set of independent vertices with one hole, and the
remaining vertices filled with pegs. The ‘1’ vertices represent the set of
independent vertices with one peg, and the remaining vertices holes. Finally,
the ‘0’ vertices represent the set of independent vertices consisting entirely
of holes. See Figure 4.2.
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Figure 4.2: Types of Vertices in the Bipartite Game

‘4’ Vertex ‘3’ Vertex

‘1’ Vertex ‘0’ Vertex
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The starting state for this game consists of one vertex labeled ‘3’ and the
remaining vertices labeled ‘4.’ The desired ending state is to have one vertex
labeled ‘1’ and the remaining vertices labeled ‘0.’ Essentially, each vertex in
the game is a partition of a complete bipartite graph. Expanding the labeled
vertex idea into actually drawing the graphs as they are, we have multiple
partitions of complete bipartite graphs. The above desired ending state is
simply the expanded graph with one peg and the rest holes. We must first
consider the relationship between adjacent vertices of all possible labels. See
Figure 4.3. “Solvable” means, as it originally did, the graph is reduceable to
one peg and the remaining vertices holes, which in the Bipartite Game, is
equivalent to one ‘1’ vertex and the remaining vertices ‘0’ vertices. “No legal
moves” means there are no two pegs adjacent to a hole.
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Figure 4.3: Relationships Between Vertex Types in the Bipartite Game
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Essentially, the rules in the Bipartite Game correspond directly with how
two halves of a complete bipartite graph interact in the old peg game.

Theorem 4.0.29 Every connected graph can be freely solved with the final
‘1’ vertex ending in any position in the Bipartite Game.

Proof. It suffices to show the result holds for trees, as every connected
graph has a spanning tree. Starting with a ‘3’ on any vertex, it is possible
to replace every ‘4’ on the graph with a ‘1’ since 4− 3 and 4− 1 both reduce
down to 1 − 1 by the rules outlined above. Propagate ‘1’s throughout the
graph. Further, we can replace 3− 1 by 1− 1 by the rules. Once all vertices
are labeled ‘1,’ choose any vertex to be the ‘1’ at the end. Designate this
vertex as the root, r. Begin with the vertices furthest away from r. Relabel
these vertices as ‘0’s using the rule 1−1 → 1−0. Remove all vertices labeled
‘0,’ and repeat the process on the remaining graph until only r is labeled
with a ‘1’ and all other vertices are labeled ‘0.’

Take a labeled graph G from the Bipartite Game and expand it according
to its rules. If it is a ‘4’ vertex, fill all of its constituent vertices with pegs. If
it is a ‘3’ vertex, fill all but one of its constituent vertices with pegs. If it is
a ‘1’ vertex, fill one of its constituent vertices with a peg. If it is a ‘0’ vertex,
make all of its constituent vertices holes. Connect all constituent vertices
of one vertex to all constituent vertices of all vertices adjacent to it in G of
the Bipartite Game. We now have an ordinary graph formed from a labeled
graph, call it GL.

Theorem 4.0.30 Any graph GL is freely solvable in the original game.

Proof. Reduce GL back down to G with labels in the Bipartite Game with
one ‘3’ vertex and the rest ‘4’ vertices. We know this can be freely solved by
Theorem 4.0.29. We also know this can be solved with the final ‘1’ vertex
wherever we want it by Theorem 4.0.29. Hence, the result holds.



Chapter 5

PROGENATION OF

SOLVABLE TREES

We now turn towards creating solvable graphs. In particular, we look at
creating solvable trees. There is a theorem which says that all connected
graphs have spanning trees as subgraphs. When spanning subgraphs are
solvable, the original graphs are solvable. Thus if a spanning tree is solvable,
the graph is solvable. Hence, we work on progenating solvable trees. For
example, consider P3, a solvable tree. Solve it, resulting in a peg in one of
the end vertices. Append an edge with a peg onto this remaining vertex,
resulting in P4 with two adjacent pegs and two adjacent holes. This graph,
expectedly, is also solvable. We continue this process resulting in all solvable
trees. See Figure 5.1.

In order to improve this method of progenation, we note that at each level
(i.e., a tree on 3 vertices, 4 vertices, etc.) we have only a specific solving of
the tree. We choose to consider all solvings on each overlying tree framework
(such as P4). We check each vertex in the overlying tree framework to see if
we can solve from that starting state. We also use the idea in the Reverse
Game that if you can solve given a certain starting state, you can also solve

Figure 5.1: First Two Descendants of P3
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leaving the final peg in that starting state’s initial hole location in order to
make sure we find all possible terminal states for a given tree from which to
append edges and progenate from. We recognize that all even paths (P2n),
n ≥ 3, will not be produced from this progenation on P3 since P2n+1, n ≥ 2
would have to progenate these even paths and we know from Theorem 2.0.11
that P2n+1, n ≥ 2 is not solvable. Hence, if we progenate from P3 and each
successive even path starting with P6, this progenation creates almost all
solvable trees of order 9 or less. More specifically, this progenation generates
100% of the solvable trees on 3, 4, 5, 6, and 7 vertices and approximately
91% of the solvable trees on 8 and 9 vertices.

The following table consists of all solvable trees with their ancestors and
descendants of order 9 or less obtained from the progenation method defined
above. See the following tables. The red holes/pegs correspond to all the
locations on each graph in which the initial hole can be placed and, equiva-
lently, the final peg can land (up to isomorphisms). For trees of order 9, the
red holes/pegs are still legitimate starting/ending locations. However, we no
longer guarantee that these locations are the only legitimate starting/ending
locations on the graph. The final table shows the only three graphs (stem-
ming from one root graph) of solvable trees not found by procreating from
P3, P6, and P8 (up to order 9).
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Table 5.1: Solvable Trees Found Through Progenation (n ≤ 6)

Order Label Solvable Tree Ancestor Children

3 3a None 1

4 4a 3a 1

5 5a 4a 2

6 6a 5a 3

6 6b 5a 2

6 6c None 1
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Table 5.2: Solvable Trees Found Through Progenation (n = 7)

Order Label Solvable Tree Ancestor Children

7 7a 6a 3

7 7b 6a 1

7 7c 6a
1

1 common child w/7b

7 7d 6b
1

1 common child w/ 7c

7 7e 6b
(1 in common with

children of 7c/7d & 7a)

7 7f 6c
3

(1 in common with 7a)
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Table 5.3: Solvable Trees Found Through Progenation (n = 8)

Order Label Solvable Tree Ancestor Children

8 8a 7a/7e 4

8 8b 7a/7f
4

1 in common with 8a

8 8c 7a 3

8 8d 7b/7c 1

8 8e 7c/7d/7e
3

1 in common w/ 8a & 8d
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Table 5.4: Solvable Trees Found Through Progenation (n = 8, cont)

Order Label Solvable Tree Ancestor Children

8 8f 7d
1

1 in common w 8e

8 8g 7f 2

8 8h 7f
1

1 in common w/ 8b

8 8i 7f
1

1 in common w/ each
of 8a, 8g, & 8h

8 8j None 2
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Table 5.5: Solvable Trees Found Through Progenation (n = 9)

Order Label Solvable Tree Ancestor Children

9 9a 8a/8i ?

9 9b 8a/8c/8e ?

9 9c 8a/8b ?

9 9d 8a ?

9 9e 8b/8h ?

9 9f 8b ?
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Table 5.6: Solvable Trees Found Through Progenation (n = 9, cont)

Order Label Solvable Tree Ancestor Children

9 9g 8b ?

9 9h 8b/8g ?

9 9i 8c ?

9 9j 8c ?

9 9k 8d/8e ?

9 9l 8d ?
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Table 5.7: Solvable Trees Found Through Progenation (n = 9, cont)

Order Label Solvable Tree Ancestor Children

9 9m 8e ?

9 9n 8e ?

9 9o 8e/8f ?

9 9p 8f ?

9 9q 8g/8i ?

9 9r 8h/8i ?
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Table 5.8: Solvable Trees Found Through Progenation (n = 9, cont)

Order Label Solvable Tree Ancestor Children

9 9s 8i ?

9 9t 8j ?

9 9u 8j ?
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Table 5.9: Remaining Solvable Trees up to Order 9

Order Label Solvable Tree Ancestor Children

8 8k None
2

1 common w/ 8a & 8i

9 9v 8k ?

9 9w 8k ?
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Chapter 6

OPEN PROBLEMS

How many of the 106 trees on 10 vertices are solvable? What are their
ancestors?

Which, if any, of the graphs presented as solvable are actually freely
solvable?

What are the necessary and sufficient conditions which determine a graph’s
solvability/unsolvability?

Given a graph G with n vertices and m edges, what is the probability
that G is solvable?

Consider the set of all graphs with n vertices and m edges. What is the
smallest m such that all graphs in this family are solvable? Freely solvable?

Given a solvable graph G, what is the minimum number of moves required
to solve G?

Consider a variation in which we must make jumps when available. Given
a graph G, what is the maximum number of pegs we can leave in this variant?

Given graph G with starting state S. Determine the set of terminal states
associated with S.

Given two graphs G and H, both distance 2-solvable. What can be said
about G ×H?

Given a solvable (or freely solvable) graph G. What can be said about
G × H where H is some arbitrary connected graph?

Consider the solvability of other graph products (such as direct, lexio-
graphic, graph composition, etc.).

Suppose we require our final peg to end in the hole we started from. What
graphs are solvable now?
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What about the solvability of directed graphs, when you can only jump
corresponding with the directions given?

Suppose pegs are labeled {1, 2, 3, ..., n − 1}. We require that pegs
can only jump those of lower rank. Give a labeling of G that will induce a
solution.



Bibliography

[1] Avis, D., & Deza, A. (2001). “On the solitaire cone and its relationship
to multi-commodity flows”, Mathematical Programming 90 (1): 27-57.

[2] Beasley, J. D. (1985). The Ins and Outs of Peg Solitaire. Oxford.

[3] Bell, G. I. (2008). “Solving triangular peg solitaire”, Journal of Integer
Sequences 11: Article 848.

[4] Berlekamp, E., Conway, J., & Guy, R. (1982). Winning ways for your
mathematical plays. (Vol. 2). New York, NY: Academic Press.

[5] de Bruijn, N. G. (1972). “A solitaire game and its relation to a finite
field”, Journal of Recreational Mathematics 5: 133-137.

[6] Buckley, F., & Lewinter, M. (2003). A friendly introduction to graph
theory. Upper Saddle River, New Jersey: Pearson Education.

[7] Cross, D. C. (1968). “Square Solitaire and variations”, Journal of Recre-
ational Mathematics 1: 121-123.

[8] Eiss, H. E. (1988). Dictionary of mathematical games, puzzles, and
amusements. Westport, Connecticut: Greenwood Press.

[9] Gardner, M., “Mathematical games”, Scientific American 206 (6): 156-
166.

[10] Kiyomi, M., & Matsui, T. (2001). “Integer programming based algo-
rithms for peg solitaire problems”, Proc. 2nd Int. Conf. Computers and
Games (CG 2000). Lecture Notes in Computer Science, 2063, 229-240.

73


