EEG features correlated with performance in P300-based BCI operation: a long-term case study in a home user with amyotrophic lateral sclerosis

Joseph N. Mak¹, Dennis J. McFarland¹, Theresa M. Vaughan¹, Phillippa Z. Tsui¹, Lynn M. McCane¹, Eric Sellers² and Jonathan R. Wolpaw¹

¹Laboratory of Neural Injury and Repair, Wadsworth Center, NYSDOH, Albany, NY, ²East Tennessee State University, Johnson City, TN

Introduction

Brain-computer Interface (BCI)

BCI technology can provide patients with severe motor disabilities with a non-muscular communication and control channel for conveying messages and commands to the external world (Birbaumer et al., 2002).

P300-based BCI

P300 is a positive wave that occurs about 300ms after the target (i.e., oddball) stimulus.

Clinical application of P300-based BCI

Our laboratory seeks to realize independent home-use of P300-based BCI by severely disabled individuals.

Objective

The present study set out to identify EEG features that correlate with P300-based BCI performance in the first long-term home user a man severely disabled by amyotrophic lateral sclerosis (ALS).

Methods

Subjects

- Our first Home-user (H1).
- 51 year-old research scientist with amyotrophic lateral sclerosis (ALS).

Condition

- Only remaining muscle control consists of weak eye-movements.

BCI usage

- 6-8 hours per day, i) to communicate via email with family and friends, ii) to supervise his medical research laboratory for environmental control.

BCI HomeSystem

P300-based BCI

- P300 is a positive wave that occurs about 300ms after the target (i.e., oddball) stimulus.

Data analysis

- EEG recorded from Fz, Cz, P3, Pz, P4, PO7, Oz, PO8 (see montage figures on the right).
- 155 copy-spelling runs over 12 months were analyzed.
- 18 letters per run.
- Mean accuracy = 79 +/- 12% (chance accuracy = 1.4%)

Temporal and Spectral features were extracted from each of the eight channels used online:

- Frequency-domain features from background EEG:
 1. Delta power (0.5 - 4 Hz)
 2. Theta power (4.5 - 8 Hz)
 3. Alpha1 power (8.5 - 11 Hz)
 4. Alpha2 power (11.5 - 14 Hz)
 5. Beta1 power (14.5 - 25 Hz)
 6. Beta2 power (25.5 - 35 Hz)
 7. Gamma power (> 35.5 Hz)
- Time-domain features from ERPs of target responses:
 1. Peak amplitude
 2. Latency of Positive peak
 3. Negative peak amplitude
 4. Latency of negative peak
- Feature matrix (155 runs x 11 features x 8 channels).

Results

Statistical prediction model

- Successfully predicts P300 speller online performance of H1 (R = 0.579; P<0.001).
- Components selected by the model: 1) Peak amplitude of target response at Oz, 2) Theta power at Cz.

Peak amplitude at Oz

- Oz - Positively related to P3speller performance
- Significant correlated channels are highlighted in RED.

Theta at Cz

- Cz - Negatively related to P3speller performance
- Significant correlated channels are highlighted in GREEN.

In general,

Peak amplitude of Target response

- Positively related to P3speller performance (P<0.05).
- Significant correlated channels are highlighted in RED.

Theta power

- Negatively related to P3speller performance (P<0.05).
- Significant correlated channels are highlighted in GREEN.

Conclusion

The results suggest that P300-based BCI performance might be improved by:

1. Using Theta power to assess online reliability of concurrent responses
2. Modifying stimulus presentation parameters (e.g., matrix size, matrix intensity stimulus rate, etc.) so as to increase the amplitude of the target response and/or minimize theta activity
3. Developing user training methods that increase the amplitude of the target response and/or minimize theta activity

Such user-specific improvements might substantially increase the capacity and reliability of P300-based BCI systems for long-term home use by people with severe disabilities.

Further work is needed to assess the generalizability of these predictors to other home user.

Acknowledgments

NIH (HD30146 (NCMRR, NICHD); EB00856 (NIBIB & NINDS)), James S. McDonnell Foundation, NEC Foundation, Altman Foundation, ALS Hope Foundation, Brain Communication Foundation