Table 1

<table>
<thead>
<tr>
<th>Location</th>
<th>Accuracy</th>
<th>Information Transfer Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left 1</td>
<td>0.85</td>
<td>0.75</td>
</tr>
<tr>
<td>Left 2</td>
<td>0.90</td>
<td>0.80</td>
</tr>
<tr>
<td>Right 1</td>
<td>0.70</td>
<td>0.60</td>
</tr>
<tr>
<td>Right 2</td>
<td>0.80</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Methods

During each session, participants used a 2x2 matrix of 4 virtual items to perform the following tasks:
- **Target**: A 2x2 matrix of 4 virtual items to perform the following tasks:
- **Nontarget**: A 2x2 matrix of 4 virtual items to perform the following tasks:

Results

The results of the experiments are shown in Figures 1 and 2.

Conclusions

The proposed method shows promise for improving the performance of P300-based BCIs, with higher accuracy and information transfer rates compared to traditional methods.

Acknowledgements

This work was supported by grants from the National Institutes of Health (EB00856) and the National Institute of Neurological Disorders and Stroke (HD30146).

References

The P300 Brain-Computer Interface: A New Presentation Method

1. East Tennessee State University, Z. Argona University, J. University at Albany, 4. Wadsworth Center

The P300 Brain-Computer Interface: A New Presentation Method

1. East Tennessee State University, Z. Argona University, J. University at Albany, 4. Wadsworth Center