Stocks at All Time Highs and Will Decline: Buy Now!

This isn't your typical buy on this day only sale...

William J. Trainor Jr., Ph.D., CFA

Director of the Center for the Study of Finance, Poteat Chairholder
2024 Appalachian Highlands Economics Forum

Last year's question:

A roman soldier is contemplating saving one denarii instead of going to the pub in year zero (although not defined as such at the time). Assuming you could find a bank to last 2023 years, at 3\% interest, how much would that be worth today?
$\$ 90,545,809,100,365,500,000,000,000$
Approximately \$11 Quadrillion for every person on the planet

I'm relatively certain I don't have that long.

In fact, I'm getting to the point where I don't even want the anti-aging pill.

I need the reverse aging pill.

STAYING HEALTHY
More evidence that aging might be reversible
News briefs
August 1, 2023
By Heidi Godman, Executive Editor, Harvard Health Letter

Reviewed by Anthony L. Komaroff, MD, Editor in Chief, H

Study in Mice Suggests Way to Slow Aging

Betty White discussing "tired" blood. https://www.youtube.com/watch?v=G6MIXc-Bao4

Assuming only the mice get to live forever, what can be done in $\mathbf{3 0}$ odd years?????

Assume an economic forum participant had \$1,000 back in 1990 and at the beginning of each day, always invests in the market when it goes up and in t-bills when it goes down.

By the end of 2023 , how much would you have? $\$ 805,753,766,082,446,000$
Only about $\$ 101$ million for every person on the planet.

What about the "youth" challenged?

What can we do (theoretically) in 10 years?
\$16,305,655

Lester Wright, WW2 veteran 100 years old, 100 meters in 26 seconds, 2022.

"Never underestimate the man who overestimates himself"

Charlie Munger of Berkshire Hathaway fame to describe Elon Musk

I'm 95\% certain the market is going to fall. Buy Now????!!!!

Stay in market, but one day a month decide in-or-out

Value of \$1,000 for 10-Years

"The idea that a bell rings to signal when to get into or out of the stock market is simply not credible. After nearly fitty vears in this business, I don't know anybody who has done it suc essfully and consistently.
I don't even know anybody who knows anybody who has."
John Bogle, Founder and Chief Executive of The Vanguard Group

What about individual stocks? My in-law told me their neighbor's aunt's daughter's friend bought GameStop and made a fortune.

4\% of the stocks are responsible for the entire gain in the stock market Only 42\% of stocks outperform t-bills
Of the 58\% that don't outperform t-bills, most have negative returns.
Most common return is $\mathbf{- 1 0 0 \%}$. Yes, that's all your money.

I guess you have to ask yourself, Do you feel lucky?

The Magnificent Seven

T ミラレゥ

Google

«

amazon

2023 Stock Returns，\＄100 Beginning Value

The Magnificent Seven Two

Тミムレゥ

Google

amazon
∞
Meta

2024 ＂Magnificent＂ 7 Stock Returns，\＄100 Beginning Value
180

Market Prediction

- Interest rates more likely to fall then rise
- Inflation rate has moderated to 3.2%
- GDP growth forecasted to be 3.3%

S\&P 500 earnings expected to grow 11% in 2024 and 14% in 2025

- CBOE's VIX below 15

SRt $=\alpha+\beta[(R t-1)-0.5 \sigma t 2]+\gamma($ (nff $)+\delta(G D P)+\zeta(V I X)+\eta($ (ntt $)+$ $\theta($ PE $)+\lambda($ Epsgrth $)+\mathrm{v}($ ConSent $)+\zeta($ Twitter Sent $)+\varphi($ Inside Trade $)+$ $\psi($ new issues $)+\omega($ (ExcRate $)+i(I n P r w)+\dot{u}($ Eq/As $)+\dot{\omega}(\beta 2-\beta)+$ $\bar{K}($ ConDebt $)+6(E / P-$ int $)+\varepsilon t$

$$
\begin{aligned}
& \operatorname{Pr}_{\mathrm{w}}=\mathrm{N} \frac{\ln (1+\mathrm{L})-\mu_{\mathrm{s}} \mathrm{~T}}{\sigma_{\mathrm{c}} \sqrt{ } \mathrm{~T}}+\mathrm{N} \frac{\ln (1+\mathrm{L})+\mu_{\mathrm{S}} \mathrm{~T}}{\sigma_{\mathrm{c}} \sqrt{ } \mathrm{~T}}(1+\mathrm{L})^{2 \mu / \sigma_{c} / 2} \\
& \frac{\partial}{\partial \mu} T \frac{\beta^{2}-\beta}{2} *\left(T \mu_{r}^{2}-\sigma_{r}^{2}\right)=2 \mu_{r} T^{2} \frac{\left(\beta^{2}-\mathrm{B}\right)}{2} \quad E\left[\sigma_{n+T}^{2}\right]=\omega+(\alpha+\beta)^{\mathrm{T}}\left(\sigma_{\mathrm{n}}^{2}-\omega\right)
\end{aligned}
$$

100\% Certainty

Annual Returns by Month Since 1926

