Pediatric Sepsis “A Tankless Job”

Rudy J Kink MD
Assistant Professor
University of Tennessee
Le Bonheur Children’s Medical Center
Disclosure

• I have no disclosures
Pediatric Sepsis

• Mom calls 911 because her 13 month has fever, coughing and “breathing funny”. Once you arrive the patient is awake, alert, crying but comforted by mom. The patient has a fever of 103.2 F but is in his pajamas and bundled up. No medications given. The patient has a wet diaper. As EMS, what do you do:
 – A. Transport the patient to the hospital
 – B. Start an IV and give 20 ml/kg bolus
 – C. Administer Rocephin IV/IM and transport
 – D. Encourage the mother use of antipyretics and no transport needed at this time
Pediatric Sepsis

• Mom calls 911 because her 13 month has fever, coughing and “breathing funny”. Once you arrive the patient is awake, alert, crying but comforted by mom. The patient has a fever of 103.2 F but is in his pajamas and bundled up. No medication given. The patient has a wet diaper. As EMS, what do you do:
 – A. Transport the patient to the hospital
 – B. Start an IV and give 20 ml/kg bolus
 – C. Administer Rocephin IV/IM and transport
 – D. Encourage the mother use of antipyretics and no transport needed at this time
Pediatric Sepsis

• 13 month presents to the ED after 2 days of fever. The mother had been giving tylenol recommended by EMS last night. Vitals are 104.2 F, HR 165, RR 40, Pulse Ox 95% on room air. He is grunting and lethargic. What is the next step:
 • A: Encourage oral hydration
 • B: Transport patient to ER
 • C: IV and give a bolus (20mg/kg)
 • D: Encourage the patient to f/u with PCP tomorrow
Pediatric Sepsis

• 13 month presents to the ED after 2 days of fever. The mother had been giving tylenol recommended by EMS last night. Vitals are 104.2 F, HR 165, RR 40, Pulse Ox 95% on room air. He is grunting and lethargic. What is the next step:
 • A: Encourage oral hydration
 • B: Transport patient to ER
 • C: IV and give a bolus (20mg/kg)
 • D: Encourage the patient to f/u with PCP tomorrow
Definition

- Infection
 - Inflammatory response of tissue to a microbe
- Bacteremia
 - Bacteria in the blood
- SIRS
 - At least 2 criteria
 - Fever/Hypothermia
 - Tachycardia/bradycardia for age
 - Tachypnea/respiratory failure
 - Leukopenia/bandemia
SIRS Criteria

Pediatric systemic inflammatory response syndrome criteria

<table>
<thead>
<tr>
<th>Age group</th>
<th>Heart rate (beats/minute)</th>
<th>Respiratory rate (breaths/minute)</th>
<th>Leukocyte count (leukocytes x 10^3/mm^3)</th>
<th>Systolic blood pressure (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newborn (0 days to 1 week)</td>
<td>>180 Tachycardia, <100 Bradycardia</td>
<td>>50</td>
<td>>34</td>
<td><59</td>
</tr>
<tr>
<td>Neonate (1 week to 1 month)</td>
<td>>180 Tachycardia, <100 Bradycardia</td>
<td>>40</td>
<td>>19.5 or <5</td>
<td><79</td>
</tr>
<tr>
<td>Infant (1 month to 1 year)</td>
<td>>180 Tachycardia, <90 Bradycardia</td>
<td>>34</td>
<td>>17.5 or <5</td>
<td><75</td>
</tr>
<tr>
<td>Toddler and preschool (>1 to 5 years)</td>
<td>>140 Tachycardia, NA Bradycardia</td>
<td>>22</td>
<td>>15.5 or <6</td>
<td><74</td>
</tr>
<tr>
<td>School age (>5 to 12 years)</td>
<td>>130 Tachycardia, NA Bradycardia</td>
<td>>18</td>
<td>>13.5 or <4.5</td>
<td><83</td>
</tr>
<tr>
<td>Adolescent (>12 to <18 years)</td>
<td>>110 Tachycardia, NA Bradycardia</td>
<td>>14</td>
<td>>11 or <4.5</td>
<td><90</td>
</tr>
</tbody>
</table>

NA: not applicable.

Pediatric Sepsis

• Sepsis
 – SIRS in the presence of suspected or proven infection

• Severe Sepsis
 – Sepsis with one at least 1
 • Cardiovascular dysfunction
 • Acute respiratory distress syndrome
 • >2 other organ dysfunction

• Septic Shock
 – Sepsis and cardiovascular dysfunction with hypotension and indicators of hypoperfusion
 • Metabolic acidosis
 • Lactic acidosis
 • Oliguria
 • Prolonged capillary refill
 • Core-to-peripheral temperature gap
Normal Vitals

Table 3. Normal Vital Signs For Age Of Pediatric Patients.

<table>
<thead>
<tr>
<th>Age</th>
<th>Heart Rate (bpm)</th>
<th>Respiratory Rate (bpm)</th>
<th>Systolic Blood Pressure (mm Hg)</th>
<th>Diastolic Blood Pressure (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newborn</td>
<td>90-180</td>
<td>30-50</td>
<td>60 ± 10</td>
<td>37 ± 10</td>
</tr>
<tr>
<td>1-5 months</td>
<td>100-180</td>
<td>30-40</td>
<td>80 ± 10</td>
<td>45 ± 15</td>
</tr>
<tr>
<td>6-11 months</td>
<td>100-150</td>
<td>25-35</td>
<td>90 ± 30</td>
<td>60 ± 10</td>
</tr>
<tr>
<td>1 year</td>
<td>100-150</td>
<td>20-30</td>
<td>95 ± 30</td>
<td>65 ± 25</td>
</tr>
<tr>
<td>2-3 years</td>
<td>65-150</td>
<td>15-25</td>
<td>100 ± 25</td>
<td>65 ± 25</td>
</tr>
<tr>
<td>4-5 years</td>
<td>65-140</td>
<td>15-25</td>
<td>100 ± 20</td>
<td>65 ± 15</td>
</tr>
<tr>
<td>6-9 years</td>
<td>65-120</td>
<td>12-20</td>
<td>100 ± 20</td>
<td>65 ± 15</td>
</tr>
<tr>
<td>10-12 years</td>
<td>65-120</td>
<td>12-20</td>
<td>110 ± 20</td>
<td>70 ± 15</td>
</tr>
<tr>
<td>13+ years</td>
<td>55-110</td>
<td>12-18</td>
<td>120 ± 20</td>
<td>75 ± 15</td>
</tr>
</tbody>
</table>

Adapted from: Silverman BK. Practical Information. In: Textbook of Pediatric Emergency Medicine, ©2006. Also: Jorden RC. Multiple Trauma. In: Emergency Medicine: Concepts and Clinical Practice, ©1990. All rights reserved. See References 94 and 95, respectively.
Definitions

- Multiple Organ System Failure
 - Alterations in function of multiple organs
- Cold Shock
 - Decreased perfusion,
 - Altered mental status
 - Delay capillary refill > 2-3 sec
 - Diminished peripheral pulses
 - Mottle cool extremities
 - Decreased urine output (1ml/kg/h)
- Warm Shock
 - Decreased perfusion
 - Altered mental status
 - Flash capillary refill
 - Bounding peripheral pulses
 - Decreased urine output (<1ml/kg/h)
Definitions

• Fluid-refractory/dopamine-resistant shock
 • Shock persists despite 60ml/kg fluid resuscitation in the first hour
 • Dopamine infusion of 10 mcg/kg/min
• Catecholamine-resistant shock
 • Shock persist despite use of catecholamine
 • Epinephrine
 • Norepinephrine
• Refractory Shock
 • Shock persist despite goal-directed use
 • Inotropic agents
 • Vasopressors
 • Vasodilators
 • Maintenance of metabolic (glucose and calcium)
 • Maintenance of hormonal (thyroid and hydrocortisone)
Triage

• Emergency Severity Index
 – Five-level triage system
 – Patient Acuity (vital signs, degree of distress, expected resource intensity and timeliness
 – Level 1-most urgent to level 5 least urgent
Triage

– Level 1: unresponsive, apneic, intubated, etc
– Level 2: Confused or lethargic, severe pain, respiratory distress, unstable vital signs
– Level 3: Multiple resources needed (X-ray, exam, consultation, etc.)
– Level 4: Single resource needed (X-ray exam, consultation, etc)
– Level 5: History/physical exam only
<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac arrest</td>
<td>Seizures</td>
<td>Multiple resources needed</td>
<td>Single resource needed</td>
<td>Only history/physical exam required</td>
</tr>
<tr>
<td>Respiratory arrest</td>
<td>Sepsis, severe dehydration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe respiratory distress</td>
<td>Diabetic ketoacidosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SpO₂ < 90</td>
<td>Child abuse, burns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critically injured and unresponsive trauma patient</td>
<td>Head trauma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe respiratory distress with agonal or gasping-type respirations</td>
<td>Vitamins/iron or other overdoses/ingestions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe bradycardia or tachycardia with signs of hypoperfusion</td>
<td>Infant less than 28 days of age with a fever of 100.4 °F or 38 °C, or greater</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypotension with signs of hypoperfusion</td>
<td>1-3 months of age: with a fever of 100.4 °F or 38 °C, or greater may be considered up to II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trauma patient who needs resuscitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaphylactic reaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baby who is flaccid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypoglycemia with a change in mental status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Difficulties in Triage

- Approx 2 minutes to triage
- Crying
- Overcrowding
- Poor historian
Epidemiology

- 75,000 Children hospitalized yearly for Sepsis
- Incidence 1 per 1600
- Increase in incidence
- 4.4% of all admissions
- 2/3 of cases are respiratory and blood stream
- Mortality due to shock in critically ill children is highly associated with multiple organ dysfunction syndrome
Etiology

• Most causes are not identified
• Rise in bacteremia and sepsis
 – Invasive devices
 – Mechanical ventilation
 – Central venous lines
 – Overuse of antibiotics
Differential Diagnosis

- Child Abuse (head injury)
- Hypoglycemia
- Environmental hyperthermia
- Seizures
- Congenital heart disease
- Cardiac arrhythmias
- Myocarditis
- Inborn errors of metabolism
- Congenital adrenal hyperplasia
- Malrotation with volvulus
- Intussusception
- Baclofen withdrawal syndrome

- Pyloric stenosis
- Posterior urethral valves
- Necrotizing enterocolitis
- Gastroenteritis with dehydration
- Water intoxication
- Toxin exposure (cocaine, bath salts, meth, carbon monoxide)
- Acute bilirubin encephalopathy
- Serotonin syndrome
- Neuroleptic malignant syndrome
- Malignant hyperthermia
- Kawasaki disease
Risk Factors for Sepsis

- < 1 month of age
- Serious injury (major trauma, burns, or penetrating wounds)
- Chronic debilitating medical conditions
- Immunosuppression
- Large surgical incisions
- In-dwelling vascular catheters or invasive devices
- Urinary tract abnormalities with frequent infections
Pathogens-Bacteria

- *Staphylococcus aureus* (MRSA)
- Coagulase-negative Staphylococcus (neonates and in-dwelling catheters)
- *Streptococcus pneumoniae*
- *Streptococcus pyogenes*
- Group B streptococcus in neonates
- *Pseudomonas aeruginosa*
- *Escherichia coli*
- Enterococcus species
- Klebsiella species
Pathophysiology of Sepsis

- Cellular level—decreased glucose and oxygen—anaerobic metabolism—increased lactic acid
- Decreased energy—loss of cellular integrity—cellular swelling—cell death
- Organ Dysfunction—decreased perfusion pressure—cells swell—organ swell—organ failure
- Endothelial cells of vasculature—cytokines and immunomodulators release-SIRS-hypo/hyperthermia, tachycardia, tachypnea and abnormalities in white blood cell counts
Pathophysiology of Sepsis

- Liver failure—deficiency of clotting substrates
- Kidney Failure—increased intravascular and extravascular volume
- Lung Failure—decreased compliance and increased work of breathing
- Heart Failure—decreased contractility and increased risk of dysrhythmias
- Increased hyperkalemia (kidney failure)—dysrhythmias
- Increased BUN—decreased platelet function
Pathophysiology of Sepsis

• Increased cardiac output—decreased systemic vascular resistance—wide pulse pressure—hypotension “warm shock”

• Decreased cardiac output—systemic resistance increased—metabolic acidosis—worsening hypotension—“cold shock” –Multi-organ system failure
Evaluation of Patient

- Rapid blood glucose
- Arterial blood gas
- Complete blood count
- Blood lactate
- Serum electrolytes
- Blood urea nitrogen
- Serum creatinine
- Serum calcium
- Serum total bilirubin
- Alanine aminotransferase
- Urinalysis

- Prothrombin time
- Partial thromboplastin time
- International normalized ratio
- Fibrinogen and D-dimer
- Blood culture
- Urine culture
- Culture (wound, trach, etc.)
- CRP
- Procalcitonin
- Chest Xray
Evaluation of Patient

- Lactic acidosis >3.5 mmol/L
- Age-specific leukocytosis or leukopenia
- Platelet count < 80,000/microL
- Disseminated intravascular coagulopathy
 - Decreased fibrinogen
 - Increase D-dimer, INR, PT, and PPT
- Serum creatinine >2 times upper limit of age
Treatment/Management

• Provide ventilation and oxygen
• Vascular access
• Fluid resuscitation
• Antibiotics
• Caution with decreased cardiac function
Treatment/Management

• Respiratory support
• Maintain sats >92% (pO2) >65mmHg
 – Face mask
 – High-flow nasal cannula
 – Mechanical ventilation
Treatment/Management

• Medications for Rapid Sequence Intubation
• RSI
 – Atropine, Midazolam, Fentanyl
 – Ketamine
 • Does not inhibit respiratory
 • Increased blood pressure
 • Prolonged stress state can lead to decreased noradrenalin and lead to hypotension
 – Etomidate
 • Rapid onset (30-60 secs)
 • Short duration (5-15 mins)
 • Typically avoided because of adrenal suppression

*Few cardiovascular and respiratory effects
Treatment/Management

<table>
<thead>
<tr>
<th>Age</th>
<th>Uncuffed ETT ID (mm)</th>
<th>Cuffed ETT ID (mm)</th>
<th>Initial ETT depth</th>
<th>Central Line Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newborn</td>
<td>3.0-3.5</td>
<td>3.0</td>
<td>9-10</td>
<td>5-8 cm/4 Fr</td>
</tr>
<tr>
<td>1-5 months</td>
<td>3.5</td>
<td>3.0-3.5</td>
<td>10</td>
<td>5-8 cm/4 Fr</td>
</tr>
<tr>
<td>6-11 months</td>
<td>3.5-4.0</td>
<td>3.5</td>
<td>11</td>
<td>8-12 cm/4-5 Fr</td>
</tr>
<tr>
<td>1 year</td>
<td>4.0-4.5</td>
<td>4.0</td>
<td>12</td>
<td>8-12 cm/4-5 Fr</td>
</tr>
<tr>
<td>2-3 years</td>
<td>4.5-5.0</td>
<td>4.0-4.5</td>
<td>12-13</td>
<td>8-12 cm/4-5 Fr</td>
</tr>
<tr>
<td>4-5 years</td>
<td>5.0-5.5</td>
<td>4.5-5.0</td>
<td>13-15</td>
<td>8-12 cm/5.5-6.0 Fr</td>
</tr>
<tr>
<td>6-9 years</td>
<td>5.5-6.0</td>
<td>5.0-5.5</td>
<td>15</td>
<td>8-12 cm/5.5-6.0 Fr</td>
</tr>
<tr>
<td>10-12 years</td>
<td>6.5-7.0</td>
<td>6.0-6.5</td>
<td>17</td>
<td>12-15 cm/6.0+ Fr</td>
</tr>
<tr>
<td>13+ years</td>
<td>7.0-7.5</td>
<td>6.5-7.0</td>
<td>19</td>
<td>12-15 cm/6.0+ Fr</td>
</tr>
</tbody>
</table>
Treatment/Management

• Determining Volume status
 – Extremely difficult
 – Capillary refill
 – Blood pressure
 – Normal pulses (no difference between peripheral and central pulses)
 – Warm extremities
 – Urine output >1ml/kg/hr
 – Normal mental status
Volume Status

Physical findings of volume depletion in infants and children

<table>
<thead>
<tr>
<th>Finding</th>
<th>Mild (3 to 5 percent)</th>
<th>Moderate (6 to 9 percent)</th>
<th>Severe (≥10 percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse</td>
<td>Full, normal rate</td>
<td>Rapid</td>
<td>Rapid and weak OR absent</td>
</tr>
<tr>
<td>Systolic pressure</td>
<td>Normal</td>
<td>Normal to low</td>
<td>Low</td>
</tr>
<tr>
<td>Respirations</td>
<td>Normal</td>
<td>Deep, rate may be increased</td>
<td>Deep, tachypnea OR decreased to absent</td>
</tr>
<tr>
<td>Buccal mucosa</td>
<td>Tacky or slightly dry</td>
<td>Dry</td>
<td>Parched</td>
</tr>
<tr>
<td>Anterior fontanelle</td>
<td>Normal</td>
<td>Sunken</td>
<td>Markedly sunken</td>
</tr>
<tr>
<td>Eyes</td>
<td>Normal</td>
<td>Sunken</td>
<td>Markedly sunken</td>
</tr>
<tr>
<td>Skin turgor</td>
<td>Normal</td>
<td>Reduced</td>
<td>Tenting</td>
</tr>
<tr>
<td>Skin</td>
<td>Normal</td>
<td>Cool</td>
<td>Cool, mottled, acrocyanosis</td>
</tr>
<tr>
<td>Urine output</td>
<td>Normal or mildly reduced</td>
<td>Markedly reduced</td>
<td>Anuria</td>
</tr>
<tr>
<td>Systemic signs</td>
<td>Increased thirst</td>
<td>Listlessness, irritability</td>
<td>Grunting, lethargy, coma</td>
</tr>
</tbody>
</table>
Treatment/Management

• Vascular Access
 – Peripheral IV
 – Ultrasound guided IV
 – Central line
 – Intraosseous catheter
 • Proximal tibia (2-3cm below tibial tuberosity)
 • Contraindications (previous attempts, fractures)
 • Distal Femur (3-4 cm above medical condyle)
Treatment/Management

- Fluid Resuscitation
 - Lactated Ringer’s
 - Normal Saline
 - 20ml/kg (rapid)
 - 60ml/kg (<60 minutes)
 - Fluids need to be administered by a push and not an electric pump
 - Saline-filled syringes
 - Use of single syringe connected to a 3-way stopcock which can pull fluid from a saline bag and “push” it into the patient
 - Rapid infuser or pressure bag
Treatment/Management

• Urine output
 – Foley catheter
 – 1mL/kg/h
• >40 mL/kg in first hour
 – Decreased risk of pulmonary edema
• Inotropic and vasoactive agents
Treatment/Management

• Inotropic and vasoactive agents
 – Alpha-receptors
 • Smooth muscle contraction in arterioles and bronchiole
 – Beta-receptors
 • Beta 1 – increased contractility (inotropy) and rate (chronotropy)
 • Beta 2 – smooth muscle relaxation – arteriole and bronchiole dilation
 – Dopaminergic-receptors – kidney, increase perfusion
Treatment/Management

• Dopamine
 – First-line agent
 – 10mcg/kg/min (max dose 20 mcg/kg/min)
 – Beta-adrenergic causing increase heart rate and contractility
 – High doses leads to alpha-adrenergic
 – Improves blood pressure, cardiac output, urine production, and extremity perfusion

• Epinephrine
• Milrinone
• Norepinephrine and Vasopressin
Treatment/Management

• Epinephrine
 – Severe shock
 – Max dopamine
 – 0.05 mcg/kg/min
 – >0.2-0.3 mcg/kg/min – increased alpha—vasoconstriction
 – >1 mcg/kg/min—severe peripheral vasoconstriction
Treatment/Management

• Milrinone
 – Low cardiac output
 • Echocardiography
 • Extreme delay cap refill
 • Nonpalpable peripheral pulses with normal blood pressure
 – Increased systemic vascular resistance
 – Increase inotropy
 – Increase lusitropy (diastolic relaxation)
 – Peripheral vasodilation
 – 0.25mcg/kg/min (max 0.75 mcg/kg/min)
Treatment/Management

• Norepinephrine and Vasopressin
 – Vasoconstriction
 – Alpha and Beta (more alpha therefore vasoconstriction)
 – “Warm shock”
Treatment/Management

• Antibiotics
 – Administered quickly
 – Removing infected tissue
 – Removing infected source
 – Depends on age and past medical history

• Corticosteroids
Treatment/Management

<table>
<thead>
<tr>
<th></th>
<th>Ampicillin</th>
<th>Vancomycin</th>
<th>Cefotaxime (or Ceftriaxone if Age > 4 weeks)</th>
<th>Acyclovir</th>
<th>Piperacillin/Tazobactam</th>
<th>Clindamycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 1 month</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age > 4 weeks</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concerns for intra-abdominal source</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Concerns for toxic shock syndrome</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Treatment/Management

• Special Consideration
 – Immunodeficiency
 – Central venous catheter – Vancomycin
 – Antifungal agents – Patients taking broad spectrum antibiotics
Treatment/Management

• Corticosteroids
 – 25% with septic shock have relative or absolute adrenal insufficiency
 – Choices: methylprednisolone, hydrocortisone, and dexamethasone
 • Hydrocortisone is the treatment of choice
 • Stress doses in patients with fluid-refractory and catecholamine-refractory shock
 • Cortisol level < 18 mg/dL
 • Dose 1mg/kg q6h, or 50mg/m2/24h as infusion
Disposition

- Transfer
- PICU
Thank-You

• Questions?