Ultrasound in Lumbar Neuraxial Anesthesia

Brian J Kasson CRNA MHS
Adjunct Assistant Professor of Clinical Nursing
Nurse Anesthesia Major
University of Cincinnati College of Nursing
Staff Nurse Anesthetist
The Christ Hospital
Cincinnati, OH

Disclosure Statement of Financial Interest

I, Brian J. Kasson, DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation.

Disclosure Statement of Unapproved/Investigative Use

I, Brian J. Kasson, DO NOT anticipate discussing the unapproved/investigative use of a commercial product/device during this activity or presentation.

August Bier 1898

- First spinal anesthetic

- Also –
 First nausea, vomiting and headache

US Lumbar Spine

- RA is currently the gold standard for OB and this won’t soon change
- Therefore the search for improvement in quality and safety deserves our closest attention
- Failure is multi-factorial – one of the biggest is the **blind nature** of the block

Labor Epidural Failure Rate

- Reported labor epidural failure rates 1.5-20%
- ADP 1-5% with ~50% incidence of PDPH
Pre Block Assessment

- Palpation – (most of the time)
 - Interspace
 - Midline

Can’t palpate –
- depth (distance from skin-epi space)
- angle of insertion

? Obesity, scoliosis, previous spinal surgery?

Palpation – Intercristal Line

Interspace Identification:
Accuracy of palpation

<table>
<thead>
<tr>
<th>Interspace Selection</th>
<th># pt’s</th>
<th>% correct</th>
<th>Incorrect caudad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whitty</td>
<td>121</td>
<td>55%</td>
<td>13%</td>
</tr>
<tr>
<td>Schlotterbeck</td>
<td>99</td>
<td>36%</td>
<td>15%</td>
</tr>
</tbody>
</table>
Accuracy of Palpation – Intercristal Line

n=45, term OB
Palpated IC line – verified by US

Lee – n=51 – clinical estimate - 14% in agreement with US
23% one IS higher
25% > one IS higher

Anatomical variation

<table>
<thead>
<tr>
<th>INVESTIGATOR</th>
<th>LANDMARK</th>
<th>MEAN</th>
<th>RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim - 690 MRI’s</td>
<td>Tuffier’s line</td>
<td>L4-5</td>
<td>L3-4 to L5-S1</td>
</tr>
<tr>
<td>Conus Medularis</td>
<td>L1 (lower 1/3rd)</td>
<td>T12 to L3</td>
<td></td>
</tr>
<tr>
<td>Soleiman – 635 MRI’s</td>
<td>Conus Medularis</td>
<td>L1 (middle 1/3rd)</td>
<td>T11 to L3</td>
</tr>
</tbody>
</table>

Interspace selection – Accuracy of palpation

Conus medullaris
30% T12
60% L1
10% L3
L 3-4

32% one IS ↑
55% correct
13% one IS ↓

Traumatic Spinal Cord Injury

- Report 2001 – 7 cases of cord injury
 - Pencil point needle
 - Thought to be inserted at L 2-3
 - 6/7 were OB
- Damage to more than one root
- Unilateral
- If pain – *stop, don’t inject*
Morbid obesity

- BMI $\geq 40 = $ morbid obesity in pregnancy
- MO = ASA 3 (healthy pregnancy is a 2)

↓ FRC

Obesity – Risks and Complications

<table>
<thead>
<tr>
<th></th>
<th>Morbidly Obese (%)</th>
<th>Control (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaginal delivery</td>
<td>38</td>
<td>76</td>
</tr>
<tr>
<td>Cesarean section</td>
<td>62</td>
<td>24</td>
</tr>
<tr>
<td>Labor requiring C/S</td>
<td>48</td>
<td>9</td>
</tr>
<tr>
<td>Emergency C/S</td>
<td>32</td>
<td>9</td>
</tr>
<tr>
<td>Operative time > 60 min</td>
<td>48</td>
<td>9</td>
</tr>
<tr>
<td>Prolonged delivery interval</td>
<td>25</td>
<td>4</td>
</tr>
</tbody>
</table>

Anesth Analg 1993;79:1210-8

Morbid Obesity Predicts Difficulty?

- 427 patients
 - BMI
 - Ability to palpate
 - Ability to flex
 - Experience of practitioner

of passes and total time required

AA 2009;109:1225-31

Obesity – Risk for C/S

<table>
<thead>
<tr>
<th>BMI</th>
<th>Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><20</td>
<td>0</td>
</tr>
<tr>
<td>21-30</td>
<td>0.3</td>
</tr>
<tr>
<td>31-40</td>
<td>31.6</td>
</tr>
<tr>
<td>41-50</td>
<td>77.6</td>
</tr>
<tr>
<td>51-60</td>
<td>94.0</td>
</tr>
<tr>
<td>>60</td>
<td>97.5</td>
</tr>
</tbody>
</table>

Anesth Analg 1999;91:A1064
US (Ultrasound) **Advantages**

- Determine best insertion point
- Ability to estimate needle insertion angle
- Calculate distance from skin to epidural space
- Improvement of successful block

US (Ultrasound) **Advantages**

- Noninvasive technique
- Same machine used for OB patients
- Screening tool to predict difficulty
- Excellent non-invasive training tool

US **Disadvantages**

- New skill to learn
 - requires training and practice to master
- Expensive equipment
- Longer preparation time
- Pre-puncture scan, not real time guidance
- Much more difficult in the thoracic spine –
 - Angulated spinous processes
 - Lamina overlap

Evidence for Utility and Application

Limited evidence suggests US improves **success and quality**

- RCT n=300 OB
 - Incomplete analgesia 2% vs 8%
 - Lower post block pain scores
 - Assessment was not blinded

- RCT n=370 OB Vallejo *et al.*
 - Epi failure rate 1.6% vs 5.5%
Evidence for Utility and Application

Increases **ease of performance**
(time and needle manipulations)

- RCT n=120 Chin *et al.*
 - Pt’s with difficult surface landmarks (obesity, spinal deformity, previous difficulty)
 - US pt’s
 - First attempt success rate – 62% v 32%
 - Needle passes for success – 6 v 13

Why has the technology been slow to catch on?

Anatomy - Spinal

- Cervical 7
- Thoracic 12
- Lumbar 5
- Sacral fused

Anesth 1980;52:513-6
Anatomy - Vertebral

- **Vertebral Column**
 - Spinous processes
 - Transverse processes
 - Articular processes (facet joints)
 - Lamina

Anatomy

- **Spinous Processes**
- **Transverse Processes**
- **Lamina**
- **Articular Surfaces**

Position

- Scan in position used for block placement
- Not sterile
- Pre procedure mapping of anatomy
Flexion

Transducer Selection

High Frequency
- 7 - 15 m Hz
- Linear transducer
- High resolution picture
 - Relatively clear picture
 - Undistorted image
- Poor tissue penetration
- Useful for superficial nerves
 - Peripheral nerve & TAP blocks

Low Frequency
- 2-5 m Hz
- Curved array transducer
- Lower resolution
 - Poor picture quality
- Better tissue penetration
- Useful for deeper blocks such as spinal and epidural

Useful Tips for a Good Image

- GEL, GEL, GEL
- CONTACT, CONTACT, CONTACT
- APPLY fair amount of PRESSURE
- Adjust probe depth to 7-10 cm

Useful Tips for a Good Image

- Constant small probe adjustments
 - Slide, rotate, tilt
Anatomical Planes –
2 basic ultrasonographic views

Longitudinal Paramedian:
Probe lateral to median plane
Image through paraspinous muscle
Lamina, lig flavum and sacrum

Transverse Midline:
Probe horizontal
Image spinous processes and interspaces

Longitudinal Paramedian (oblique)

Paramedian
Passes through paraspinous muscle
Visualize lamina and Ligamentum flavum
Used to count interspaces

Transverse Midline

- Transverse
 - Determines midline
 - Depth to ligamentum flavum
Imaging Echogenicities

- **Hyperchoic** (white & bright)
 - Bone
 - Ligament
 - Dura

- **Isoechoic** (grey)
 - Muscles

- **Hypoechoic** (dark & black)
 - Intrathecal space
 - CSF
 - Blood
 - Fluids

Pattern Recognition

Step One: Longitudinal Paramedian Image of Sacrum and L5-S1 Interspace

- Start left paramedian (top of crease)
- Slightly angled toward center, 2-3 cm off midline
- Sacrum is solid white line – ID L5-S1 interspace

Step Two: Slide Probe Cephalad

- Move cephalad
- Look for “saw” image
- Count and mark interspaces – from center of probe
The lig flavum-epi space-post dura appear as a single linear hyperechoic structure "posterior complex"

Step Three: Rotate Probe to Transverse and ID interspace

- When at the desired interspace –
- Rotate probe to transverse
- Position in midline
- “Cone” image indicates probe is over spinous process
Step Four: Slide Probe into Interspace

- Slide probe cephalad or caudad into selected interspace
- Looking for “bat head” image
- “Ears” are articular processes – top of “head” is flavum/dura (posterior complex)
- Mark skin

Place Marks – Insertion Point is Intersection of Lines

Images of the process

Step Five: Measure Distance from Skin to Dura/flavum

Image of measurement process

Sonoanatomy in Scoliosis

- L2-L3 – essentially normal
- L3-L4 - assymetrical

Images of sonoanatomy in scoliosis
Avoid significant compression of subcutaneous tissue during measurement of skin to flavum distance