ADDENDUM NO. 01

1. Pre-bid will be Monday, April 9 at 1:00 pm at the ETSU Facilities Conference Room at 1380 Jack Vest Drive, Wilbur Bond Building, on the campus of East Tennessee State University, Johnson City, TN.

2. Proposals will be received until Wednesday, April 18, at 3:00 pm, local time, by Chris Broglio at Burwil Construction Company, (CM/GC) Phone: 423-968-4158, Fax: 423-968-3199 or email at cbroglio@burwil.com.

3. Refer to Specification Section 00 01 10 Table of Contents V1: Delete section 12 48 13 Entrance Mats in index. There are no entrance mats in the project.

4. Refer to Specification Section 00 01 10 Table of Contents V2: Delete section 12 48 13 Entrance Mats in index. There are no entrance mats in the project.

5. Refer to Specification Section 03 33 00 Cast In Place Architectural Concrete: Add this entire section as part of this Addendum NO. 1.

6. Refer to Specification Section 07 43 13, Metal Wall Panels, paragraph 2.01B. Omit reference to galvanized steel and galvanized coating. Panel is to be aluminum.

7. Refer to Specification Section 07 62 00, Sheet Metal Flashing and Trim, paragraph 2.02D. Please refer to this paragraph for verification of Metal Soffit Panel material and type.

8. Refer to Specification Section 08 81 00, Glass and Glazing, paragraph 1.05A. Omit reference to required certification in regard to the National Glass Association Glazier Certification.
9. Clarification: Specification Section 31 25 00 is in regard to landscape boulders and river stone. Specification Section 31 25 00 is for temporary erosion and sediment control.

10. Clarification: Exterior concrete paving is required to be 4,500 PSI.

11. Refer to Specification Section 32 14 00 Permeable Clay Brick Pavers, paragraph 104.A.3 Omit this paragraph. Omit paragraph 1.04B.1.

12. Clarification: Refer to Specification Section 32 14 00 Permeable Clay Brick Pavers, paragraph 2.02 Aggregate Materials. Bedding course and joint filler are to be as specified.

13. Clarification: Disturbed areas are to be seeded unless indicated differently on drawings.

14. Clarification: Tree nurseries other than those listed will be considered, but must be submitted for approval during bidding.

15. Clarification: At Office 110B the ceiling is exposed structure.

16. Clarification: At detail 1/A501 provide 2” insulation with ‘z’ channels at 5/8” thick, painted gypsum board to right and left of wood panel section.

17. Clarification: Detail 2 on sheet A508 correctly shows stone cladding which is also shown on elevation 2/A301.

18. Clarification: In Comm Room 242 no floor, base or wall finish is required.

19. Clarification: The main floor between Stair 3 and the Elevator is labelled as LVT-3. This floor should be labelled as LVT-2.

20. Clarification: Floor in Kitchen 365 should be labelled a CT-4 in lieu of CR-4.

21. Clarification: Louvered screen fence is to be Orsogril as indicated on drawings.

23. Clarification: The exterior cladding on the south side of the monumental stair tower above the roof is the calcium silicate cladding with metal panel at fascia.

24. Clarification: Section 6/S501 when located on sheet S112 indicates a top of footing elevation of 93.0.
25. Refer to drawing sheet E009, Lighting schedule. The following fixtures are approved equals for the fixtures scheduled.
 b. AA – GL-2671 Sidney 3” Indoor Pendant by Lighting Trends, Inc.
 c. A2 – GL-2673 Sidney 3” Indoor Pendant by Lighting Trends, Inc.
 d. E1, E2 – COL-LED-225 - Collin LED Direct Indirect Luminaire, Birchwood Lighting by Lighting Trends, Inc.
 e. K1 – 6” EVO by Gotham by Lighting Trends, Inc.
 f. S – E3 Series Exterior LED by Lighting Trends, Inc.
 g. T1 – GL-2741 Marina II Interior Round Pendant by Lighting Trends, Inc.
 h. U1 – GL-2721 Orbis Inner Acrylic Interior Pendant by Lighting Trends, Inc.
 d. U2 – GL2722 Orbis Inner Acrylic Interior Pendant by Lighting Trends, Inc.
 j. U3 – GL2724 Orbis Inner Acrylic Interior Pendant by Lighting Trends, Inc.
 k. SH – Celena Outdoor, Oxygen Lighting by Lighting Trends, Inc.

 Replace these previously issued drawing sheets with new sheets of the same name with revisions marked Addendum NO. 1, attached as part of this Addendum NO. 1.

END OF ADDENDUM NO. 1
SECTION 03 33 00

CAST-IN-PLACE ARCHITECTURAL CONCRETE

PART 1 GENERAL

1.01 SUMMARY

A. This Section specifies cast-in-place architectural concrete, including formwork, form facings, reinforcement accessories, concrete materials, concrete mix design, placement procedures and finishes.

1.02 RELATED SECTIONS

A. Cast-in-Place Concrete (Structural): Section 03 30 00.

B. Joint Sealants: Section 07 92 00.

1.03 DEFINITION

A. Cast-in-Place Architectural Concrete: Formed concrete that is exposed to view on surfaces of the completed structure or building and that requires special concrete materials, formwork, placement, or finishes to obtain specified architectural appearance.

B. Cementitious Materials: Portland cement alone or in combination with one or more of the following: blended hydraulic cement, fly ash and other pozzolans, ground granulated blast-furnace slag, and silica fume; subject to compliance with requirements.

1.04 SUBMITTALS

A. Product Data: For each type of manufactured material and product indicated.

B. Design Mixes: For each concrete mix. Include alternate mix designs when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.

C. Shop Drawings: Show formwork construction including form-facing joints, rustications, construction and contraction joints, form joint-sealant details, form tie location and patterns, inserts and embedments, cutouts, cleanout panels, and other items that visually affect cast-in-place architectural concrete.

D. Samples: For each of the following materials:
 1. Form-facing panel.
 2. Form-release agent.
 3. Form ties and cones.
5. Coarse- and fine-aggregate gradations.
6. Chamfers and rustications.
7. Curing compound.

E. Samples for Verification: Architectural concrete Samples, cast vertically, approximately 18 by 18 by 2 inches, of finishes, colors, and textures to match design reference sample. Include Sample sets showing the full range of variations expected in these characteristics.

1.05 QUALITY ASSURANCE

A. Installer Qualifications: An experienced concrete contractor who has specialized in installing cast-in-place architectural concrete similar in material, design, and extent to that indicated for this Project and whose work has resulted in construction with a record of successful in-service performance.

B. Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products complying with ASTM C94 requirements for production facilities and equipment. Manufacturer must be certified according to the National Ready Mixed Concrete Association's "Certification of Ready Mixed Concrete Production Facilities."

C. Source Limitations for Cast-in-Place Architectural Concrete: Obtain each color, size, type, and variety of concrete material and concrete mix from one manufacturer with resources to provide cast-in-place architectural concrete of consistent quality in appearance and physical properties.

D. ACI Standards: Comply with the following unless modified by requirements in the Contract Documents:
 1. ACI 117, Specifications for Tolerances for Concrete Construction and Materials
 2. ACI 301, "Specification for Structural Concrete"
 3. ACI 303.1, "Specification for Cast-in-Place Architectural Concrete"

E. Field Sample Panels: After approval of verification sample, before casting architectural concrete, produce sample panels to demonstrate the approved range of selections made under sample Submittals. Produce a minimum of 3 sets of full-scale sample panels, cast vertically, approximately 48 by 48 by 6 inches minimum, to demonstrate the expected range of finish, color, and texture variations.
 1. Locate panels as indicated or, if not indicated, as directed by Architect.
 2. Demonstrate methods of curing aggregate exposure, sealers, and coatings, as applicable.
 3. In presence of Architect, damage part of an exposed-face surface for each finish, color, and texture, and demonstrate materials and techniques proposed for repair of tie holes and surface blemishes to match adjacent undamaged surfaces.
 4. Maintain sample panels during construction in an undisturbed condition as a standard for judging the completed Work.
 5. Demolish and remove sample panels when directed.

F. Concrete Testing Service: Owner will engage a qualified independent testing agency to perform material evaluation tests and to design concrete mixtures.
PART 2 PRODUCTS

2.01 FORM-FACING MATERIALS

A. General: Comply with Section 03 30 00 "Cast-in-Place Concrete" for formwork and other form-facing material requirements.

B. Forms for Cylindrical Columns, Pedestals, and Supports: Metal, glass-fiber-reinforced plastic, paper, or fiber tubes that will provide surfaces with gradual or abrupt irregularities not exceeding specified formwork surface class. Provide units with sufficient wall thickness to resist plastic concrete loads without detrimental deformation.
 1. Furnish in largest practicable sizes to minimize number of joints.

C. Form Liners: Units of face design, texture, arrangement, and configuration to match design reference sample. Furnish with manufacturer's recommended liquid-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent surface treatments of concrete.

D. Rustication Strips: Metal, rigid plastic or dressed wood with sides beveled and back kerfed; nonstaining; in longest practicable lengths.

E. Chamfer Strips: Metal, rigid plastic, elastomeric rubber, or dressed wood, 3/4 by 3/4 inch, minimum; nonstaining.

F. Form Joint Tape: Compressible foam tape, pressure sensitive, AAMA 800, "Specification 810.1, Expanded Cellular Glazing Tape"; minimum 1/4 inch thick.

G. Form Joint Sealant: Elastomeric sealant complying with ASTM C920, Type M or S, Grade NS, that adheres to form joint substrates.

H. Sealer: Penetrating, clear, polyurethane wood form sealer formulated to reduce absorption of bleed water and prevent migration from wood of set-retarding chemicals.

I. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect architectural concrete surfaces and will not impair subsequent treatments of those surfaces. Formulate form-release agent with rust inhibitor for steel form-facing materials.

J. Form Ties: Factory-fabricated, glass-fiber-reinforced plastic or removable ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal.
 1. Provide internally disconnecting ties that will leave no metal closer than 1-1/2 inches from the architectural concrete surface.
 2. Provide glass-fiber-reinforced plastic ties, not less than 1/2 inch in diameter, of color selected by Architect from manufacturer's full range.

2.02 REINFORCEMENT ACCESSORIES

A. General: Comply with Section 03 30 00 "Cast-in-Place Concrete" for steel reinforcement and other requirements for reinforcement accessories.
B. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire fabric in place. Where legs of wire bar supports contact forms, use gray, CRSI Class 1 plastic-protected bar supports.

2.03 CONCRETE MATERIALS

A. Portland Cement: ASTM C150, Type I/II, gray color, of same type, brand, and source for entire Project.
 1. Fly Ash: ASTM C618, Class C or F.

B. Normal-Weight Coarse Aggregate: ASTM C33, from the same source for entire Project with documented service record data of at least 10 years' satisfactory service in similar applications and service conditions using similar aggregates and cementitious materials, and as follows:
 1. Weathering Region and Class: Moderate, 5M.
 2. Nominal Maximum Aggregate Size: 1 inch.

C. Normal-Weight Fine Aggregate: ASTM C33, manufactured or natural sand, from the same source for entire Project.

D. Water: Potable, complying with ASTM C94 except free of wash water from mixer washout operations.

2.04 ADMIXTURES

B. Chemical Admixtures: Certified by manufacturer to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material and to be compatible with other admixtures and cementitious materials. Do not use admixtures containing calcium chloride.
 1. Water-Reducing Admixture: ASTM C494, Type A.
 2. High-Range, Water-Reducing Admixture: ASTM C494, Type F.
 3. Water-Reducing and Accelerating Admixture: ASTM C494, Type E.
 4. Water-Reducing and Retarding Admixture: ASTM C494, Type D.

2.05 CURING MATERIALS

A. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. when dry.

B. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.

C. Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B. For concrete indicated to be sealed, curing compound shall be compatible with sealer.

2.06 REPAIR MATERIALS

A. Bonding Agent: ASTM C1059, Type II, non-redispersible, acrylic emulsion or styrene butadiene.
B. Epoxy-Bonding Adhesive: ASTM C881, two-component epoxy resin, capable of humid curing and bonding to damp surfaces, of class and grade to suit requirements, and as follows:
 1. Types IV and V, load bearing, for bonding hardened or freshly mixed concrete to hardened concrete.

2.07 CONCRETE MIXES

A. Prepare design mixes for each type and strength of cast-in-place architectural concrete determined by either laboratory trial mix or field test data bases. Proportion concrete according to ACI 211.1 and ACI 301.

B. Use a qualified independent testing agency for preparing and reporting proposed concrete mix designs for the laboratory trial mix basis.

C. Proportion concrete mix as follows:
 2. Maximum Water-Cementitious Materials Ratio: 0.46.
 3. Maximum Slump: 3 inches.
 4. Maximum Slump for Concrete Containing High-Range, Water-Reducing Admixture: 8 inches after admixture is added to concrete with 2- to 4-inch slump.

D. Cementitious Materials: For cast-in-place architectural concrete exposed to deicers, limit percentage, by weight, of cementitious materials other than Portland cement according to ACI 301 requirements.

E. Admixtures: Use admixtures according to manufacturer's written instructions.

2.07 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, mix, and deliver cast-in-place architectural concrete according to ASTM C94, and furnish batch ticket information.
 1. Clean equipment used to mix and deliver cast-in-place architectural concrete to prevent contamination from other concrete.
 2. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 90 to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

PART 3 EXECUTION

3.01 FORMWORK

A. General: Comply with Section 03 30 00 "Cast-in-Place Concrete" for formwork, embedded items, and shoring and reshoring.

B. Limit deflection of form-facing panels to not exceed ACI 303.1 requirements.

C. In addition to ACI 303.1 limits on form-facing panel deflection, limit concrete surface irregularities, designated by ACI 347R as abrupt or gradual, as follows:
 1. Class A, 1/8 inch.
D. Fabricate forms to result in cast-in-place architectural concrete that complies with ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."

E. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast-in-place surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical. Kerf wood rustications, keyways, reglets, recesses, and the like, for easy removal.
 1. Seal form joints and penetrations at form ties with form joint tape or form joint sealant to prevent cement paste leakage.
 2. Do not use rust-stained, steel, form-facing material.

F. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations.

G. Chamfer exterior corners and edges of cast-in-place architectural concrete as detailed.

H. Coat contact surfaces of wood rustications and chamfer strips with sealer before placing reinforcement, anchoring devices, and embedded items.

I. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.

J. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.

K. Seal form joints and penetrations at form ties with form joint tape or form joint sealant to prevent mortar leaks.

L. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.

M. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement.

N. Place form liners accurately to provide finished surface texture indicated. Provide solid backing and attach securely to prevent deflection and maintain stability of liners during concreting. Prevent form liners from sagging and stretching in hot weather. Seal joints of form liners and form liner accessories to prevent mortar leaks. Coat form liner with form-release agent.

3.02 REINFORCEMENT AND INSERTS

A. General: Comply with Section 03 30 00 "Cast-in-Place Concrete" for fabricating and installing steel reinforcement.

B. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.
3.03 REMOVING AND REUSING FORMS

A. Formwork that does not support weight of concrete may be removed after cumulatively curing at not less than 50 deg F for 24 hours after placing concrete, provided concrete is hard enough to not be damaged by form-removal operations and provided curing and protection operations are maintained.
 1. Schedule form removal to maintain surface appearance that matches approved sample panels.

B. Clean and repair surfaces of forms to be reused in the Work. Do not use split, frayed, delaminated, or otherwise damaged form-facing material. Apply new form-release agent.

C. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for architectural concrete surfaces.

3.04 JOINTS

A. Construction Joints: Install construction joints true to line with faces perpendicular to surface plane of cast-in-place architectural concrete so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.
 1. Place joints perpendicular to main reinforcement. Continue reinforcement across construction joints, unless otherwise indicated.
 2. Use bulkhead forms with keys of plywood, wood, or expanded galvanized steel sheet, unless otherwise indicated. Embed keys at least 1-1/2 inches into concrete. Align construction joint within rustications attached to form-facing material.
 3. Locate joints for beams, slabs, joists, and girders in the middle third of spans. Offset joints in girders a minimum distance of twice the beam width from a beam-girder intersection.
 4. Locate horizontal joints in walls and columns at underside of floors, slabs, beams, and girders and at the top of footings or floor slabs.
 5. Space vertical joints in walls as indicated. Locate joints beside piers integral with walls, near corners, and in concealed locations where possible.
 6. Use bonding agent at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.

B. Contraction Joints: Form weakened-plane contraction joints true to line with faces perpendicular to surface plane of cast-in-place architectural concrete so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.

3.05 CONCRETE PLACEMENT

A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.

B. Do not add water to concrete during delivery, at Project site, or during placement, unless approved by Architect.
C. Before placing concrete, verify that installation of formwork, form-release agent, reinforcement, and embedded items is complete and that required inspections have been performed.

D. Deposit concrete continuously between construction joints. Deposit concrete to avoid segregation.

E. Deposit concrete in horizontal layers of depth to not exceed formwork design pressures and in a manner to avoid inclined construction joints.
 1. Consolidate placed concrete with mechanical vibrating equipment. Use equipment and procedures for consolidating concrete recommended by ACI 309R.
 2. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations to rapidly penetrate placed layer and at least 6 inches into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity. Do not permit vibrators to contact forms.

F. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.
 1. When air temperature has fallen to or is expected to fall below 40 deg F for three successive days, maintain delivered concrete mixture temperature within the temperature range required by ACI 301.
 2. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.
 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators, unless otherwise indicated and approved in concrete mix designs.

G. Hot-Weather Placement: Place concrete according to recommendations in ACI 305R and as follows, when hot-weather conditions exist:
 1. Cool ingredients before mixing to maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 2. Cover steel reinforcement with water-soaked burlap so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.
 3. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

3.06 FINISHES, GENERAL

A. Architectural Concrete Finish: Match Architect's design reference sample, identified and described as indicated, to satisfaction of Architect.

B. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces.
1. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces, unless otherwise indicated.

C. Maintain uniformity of special finishes over construction joints, unless otherwise indicated.

3.07 AS-CAST FORMED FINISHES

A. Rubbed Finish: Apply the following to smooth-form-finished as-cast concrete:
 1. Smooth-Rubbed Finish: Not later than one day after form removal, moisten concrete surfaces and rub with carborundum brick or another abrasive until producing a uniform color and texture. Do not apply cement grout other than that created by the rubbing process.

3.08 CONCRETE CURING

A. Protect freshly placed concrete from premature drying and excessive cold or hot temperatures according to ACI 301 and ACI 306.1.

B. Begin curing immediately after removing forms from concrete. Cure according to ACI 308.1, by one or a combination of the following methods that will not mottle, discolor, or stain concrete:
 1. Moisture Curing: Keep exposed surfaces of cast-in-place architectural concrete continuously moist for not less than seven days with the following materials:
 a. Water.
 b. Continuous water-fog spray.
 c. Absorptive cover, water saturated and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.
 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period; use cover material and waterproof tape.
 3. Curing Compound: Mist concrete surfaces with water. Apply curing compound uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.

3.09 FIELD QUALITY CONTROL

A. General: Comply with Section 03 30 00 "Cast-in-Place Concrete" for field quality-control requirements.

3.10 REPAIRS, PROTECTION, AND CLEANING

A. Repair and cure damaged finished surfaces of cast-in-place architectural concrete when approved by Architect. Match repairs to color, texture, and uniformity of surrounding surfaces and to repairs on approved mockups.
1. Remove and replace cast-in-place architectural concrete that cannot be repaired and cured to Architect's approval.

B. Protect corners, edges, and surfaces of cast-in-place architectural concrete from damage; use guards and barricades.

C. Protect cast-in-place architectural concrete from staining, laitance, and contamination during remainder of construction period.

D. Clean cast-in-place architectural concrete surfaces after finish treatment to remove stains, markings, dust, and debris.

E. Wash and rinse surfaces according to concrete finish applicator's written recommendations. Protect other Work from staining or damage due to cleaning operations.

1. Do not use cleaning materials or processes that could change the appearance of cast-in-place architectural concrete finishes.

END OF SECTION
ACOUSTIC CEILING TYPE 1:

15'-4" 14'-0"

WHERE EXIT SIGNS OCCUR OVER A DOOR OR PAIR OF DOORS,

18

17'-0"

9'-8"

ALL GYPSUM SOFFITS IN FOOD SERVICE AREAS TO BE PAINTED

11'-2"

21

11'-2"

9'-8"

10'-6"

23

10'-2"

11'-0"

11'-0"

10'-8"

PAINT DUCTWORK INSIDE AIR GRILLES FLAT BLACK.

ACOUSTIC CEILING TYPE 4:

XX'-XX"

WHERE PAINT IS DESIGNATED FOR EXPOSED OVERHEAD FINISHED CEILING

HEIGHTS ARE MARKED FROM TOP OF FINISH CEILING GRIDS ARE CENTERED ON ROOM, U.N.O. OR DIMENSIONED.

AREAS WITH M.E.P. WORK MUST REPLACE AND MATCH EXISTING GYPSUM BOARD CEILING OR SOFFIT

19

EXTERIOR COMPOUND CLG. - ACOUSTIC CEILING TYPE 2:

3S

EXISTING EXPOSED STRUCTURE- TO BE ALIGNED FEATURES

COORDINATE LOCATION OF FIXTURES WITH MECHANICAL,

ALL CEILING DEVICES TO BE CENTERED IN TILE, U.N.O.

EXTERIOR GRADE WOOD SOFFIT

3K

METAL PANEL CANOPY

2S

CENTER SIGN ON DOOR OPENING.

CONCRETE BEAM

A721

G1

4'-8 1/2"
1. Addendum 1 03/22/18

2. CURTAINWALL CURTAINWALL CURTAINWALL CURTAINWALL CURTAINWALL

3. NORTH - LOWER CURVED A

4. NORTH - LOWER CURVED B

5. NORTH - LOWER CURVED C

6. NORTH - LOWER CURVED D

7. NORTH - LOWER CURVED E

8. CURTAINWALL

9. EAST VESTIBULE - INT. SIDE

10. NORTH - UPPER CURVED

SEE 5/A721 FOR DETAIL LOCATION

See exterior elevations shown on window schedule.

This drawing is the property of Beeson, Lusk & Street, Inc. and is protected by copyright. Any use, copying or reproduction, except for use by the original owner, without the expressed consent of Beeson, Lusk & Street, is prohibited.
NEW 3 1/4" CONCRETE SLAB ON 3" COMPOSITE DECK - ON NEW STEEL STRUCTURE SEE STRUCTURAL DRAWINGS

POURED CONCRETE DECK ON METAL DECK
1/2" COVER BOARD
TERMINATION BAR
2 PIECE ALUMINUM SILL FLASHING

CURTAINWALL SILL AT GRADE
3" = 1'-0"

4" CONCRETE SLAB ON STONE BASE ON VAPOR BARRIER ON COMPACTED FILL

5" CONCRETE SIDEWALK ON 4" COMPACTED CRUSHER-RUN STONE BASE ON COMPACTED FILL

ALUMINUM CURTAINWALL - WITH SUBSILL
ALUMINUM SILL FLASHING - SET IN FULL BED OF SEALANT

1" RIGID INSULATION
NON-TRACK SEALANT OVER BACKER ROD

2" PERIMETER SLAB INSULATION - TO EXTEND INTO THE BUILDING 2'-0" - TYPICAL ALL EXTERIOR PERIMETER OF NEW ADDITION
SEE STRUCTURAL FOR FOUNDATIONS

ALUMINUM STOREFRONT WALL SYSTEM

CONCRETE PAVERS OVER PEDESTAL SUPPORT SYSTEM

.090 SINGLE-PLY ROOF MEMBRANE
(1) LAYER OF 2" FLAT 'ISO' INSULATION
TAPERED 'ISO' INSULATION

CONCRETE CURB
STOREFRONT SILL AT PEDESTAL PAVERS

.040 ALUMINUM BASE FLASHING

3" = 1'-0"

5/8" GYP. BOARD - SPEC 09 21 16
3 5/8" METAL STUDS AT 16" O.C. - SPEC 09 21 16
ALUMINUM CURTAINWALL
6" METAL STUDS AT 16" O.C. - SPEC 09 21 16
CURVED PRECAST PANELS - SPEC 3 45 11
3/4" EXTERIOR GRADE PLYWOOD
30# FELT ON FACE OF PLYWOOD UP TO TOP OF CONC. CURB

COATED COPPER HEAD FLASHING
UNFACED BATT INSULATION
SEALANT
'F' FRY REGLET

BATT INSULATION - FULL HEIGHT OF WALL - SPEC 07 21 00
5/8" GYP. BOARD - SPEC 09 21 16
6" METAL STUDS AT 16" O.C. - SPEC 09 21 16
WOOD BLOCKING

CAULK - CONT. AT PERIMETER
3x5x3/8" TUBE STEEL FOR PRECAST ANCHORAGE
SEALANT - CONT.
AROUND PERIMETER

STOREFRONT JAMB AT PRECAST
3" = 1'-0"

6" METAL STUDS AT 16" O.C. - SPEC 09 21 16
WOOD BLOCKING

CAULK - CONT.

PRECAST PANELS - SPEC 3 45 11
3/4" EXTERIOR GRADE PLYWOOD
30# FELT ON FACE OF PLYWOOD UP TO TOP OF CONC. CURB

COATED COPPER HEAD FLASHING
UNFACED BATT INSULATION
SEALANT
'F' FRY REGLET

BATT INSULATION - FULL HEIGHT OF WALL - SPEC 07 21 00
5/8" GYP. BOARD - SPEC 09 21 16
6" METAL STUDS AT 16" O.C. - SPEC 09 21 16
WOOD BLOCKING

CAULK - CONT. AT PERIMETER
3x5x3/8" TUBE STEEL FOR PRECAST ANCHORAGE
SEALANT - CONT.
AROUND PERIMETER

STOREFRONT JAMB AT PRECAST
3" = 1'-0"

6" METAL STUDS AT 16" O.C. - SPEC 09 21 16
WOOD BLOCKING

CAULK - CONT.

PRECAST PANELS - SPEC 3 45 11
3/4" EXTERIOR GRADE PLYWOOD
30# FELT ON FACE OF PLYWOOD UP TO TOP OF CONC. CURB

COATED COPPER HEAD FLASHING
UNFACED BATT INSULATION
SEALANT
'F' FRY REGLET