

Chapter 19

Blood

PowerPoint® Lecture Slides prepared by Jason LaPres Lone Star College - North Harris

Copyright © 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Introduction to the Cardiovascular System

- To transport materials to and from cells
 - Oxygen and carbon dioxide
 - Nutrients
 - Hormones
 - Immune system components
 - Waste products

Functions of Blood

- Transport of dissolved substances
- Regulation of pH and ions
- Restriction of fluid losses at injury sites
- Defense against toxins and pathogens
- Stabilization of body temperature

- Whole Blood
 - Plasma
 - Fluid consisting of:
 - water
 - dissolved plasma proteins
 - other solutes
 - Formed elements
 - All cells and solids

- Three Types of Formed Elements
 - Red blood cells (RBCs) or erythrocytes
 - Transport oxygen
 - White blood cells (WBCs) or leukocytes
 - Part of the immune system
 - Platelets
 - Cell fragments involved in clotting

- Hemopoiesis
 - Process of producing formed elements
 - By myeloid and lymphoid stem cells
- Fractionation
 - Process of separating whole blood for clinical analysis
 - Into plasma and formed elements

- Three General Characteristics of Blood
 - 38°C (100.4°F) is normal temperature
 - High viscosity
 - Slightly alkaline pH (7.35–7.45)

- Blood volume (liters) = 7% of body weight (kilograms)
 - Adult male: 5 to 6 liters
 - Adult female: 4 to 5 liters

Plasma

- Makes up 50–60% of blood volume
- More than 90% of plasma is water
 - Materials plasma exchanges across capillary walls
 - Water
 - lons
 - Small solutes

Plasma

Plasma Proteins

- Albumins (60%)
 - Transport substances such as fatty acids, thyroid hormones, and steroid hormones
- Globulins (35%)
 - Antibodies, also called immunoglobulins
 - Transport globulins (small molecules): hormone-binding proteins, metalloproteins, apolipoproteins (lipoproteins), and steroid-binding proteins
- Fibrinogen (4%)
 - Molecules that form clots and produce long, insoluble strands of fibrin

Plasma

- Serum
 - Liquid part of a blood sample
 - In which dissolved fibrinogen has converted to solid fibrin
- Other Plasma Proteins
 - 1% of plasma
 - Changing quantities of specialized plasma proteins
 - Enzymes, hormones, and prohormones

- Red blood cells (RBCs) make up 99.9% of blood's formed elements
- Hemoglobin
 - The red pigment that gives whole blood its color
 - Binds and transports oxygen and carbon dioxide

- Structure of RBCs
 - Small and highly specialized discs
 - Thin in middle and thicker at edge
 - Quickly absorbs and releases oxygen

- Lifespan of RBCs
 - Lack nuclei, mitochondria, and ribosomes
 - Means no repair and anaerobic metabolism
 - Live about 120 days

- Hemoglobin (Hb)
 - Protein molecule, that transports respiratory gases

- Hemoglobin Structure
 - Complex quaternary structure
 - Four globular protein subunits:
 - Each with one molecule of heme
 - Each heme contains one iron ion
 - Iron ions
 - Associate easily with oxygen (oxyhemoglobin)
 - » OR
 - Dissociate easily from oxygen (deoxyhemoglobin)

- Hemoglobin Function
 - Carries oxygen
 - With low oxygen (peripheral capillaries)
 - Hemoglobin releases oxygen
 - Binds carbon dioxide and carries it to lungs
 - Forms carbaminohemoglobin

- RBC Formation and Turnover
 - 1% of circulating RBCs wear out per day
 - About 3 million RBCs per second
 - Macrophages of liver, spleen, and bone marrow
 - Monitor RBCs
 - Engulf RBCs before membranes rupture (hemolyze)

- RBC Production
 - Erythropoiesis
 - Occurs only in red bone marrow in adults
 - Stem cells (Hemocytoblasts) mature to become RBCs
 - Myeloid stem cells: become RBCs, some WBCs
 - Lymphoid stem cells: become lymphocytes

- Are cell surface proteins that identify cells to immune system
- Normal cells are ignored and foreign cells attacked
- Blood types
 - Are genetically determined
 - By presence or absence of RBC surface antigens A,
 B, Rh (or D)

- Four Basic Blood Types
 - A (surface antigen A)
 - B (surface antigen B)
 - AB (antigens A and B)
 - O (neither A nor B)

- Agglutinogens
 - Antigens on surface of RBCs
 - Screened by immune system
 - Plasma antibodies attack and agglutinate (clump) foreign antigens

- Blood Plasma Antibodies
 - Type A
 - Type B antibodies
 - Type B
 - Type A antibodies
 - Type O
 - Both A and B antibodies
 - Type AB
 - Neither A nor B antibodies

- The Rh Factor
 - Also called D antigen
 - Either Rh positive (Rh⁺) or Rh negative (Rh⁻)
 - Only sensitized Rh⁻ blood has anti-Rh antibodies

- Cross-Reactions in Transfusions
 - Also called transfusion reaction
 - Plasma antibody meets its specific surface antigen
 - Blood will agglutinate and hemolyze
 - Occur if donor and recipient blood types not compatible

- Cross-Match Testing for TransfusionCompatibility
 - Performed on donor and recipient blood for compatibility
 - Without cross-match, type O⁻ is universal donor

- Also called leukocytes
- Do not have hemoglobin
- Have nuclei and other organelles
- WBC functions
 - Defend against pathogens
 - Remove toxins and wastes
 - Attack abnormal cells

- WBC Circulation and Movement
 - Most WBCs in
 - Connective tissue proper
 - Lymphoid system organs
 - Small numbers in blood

- WBC Circulation and Movement
 - Characteristics of circulating WBCs
 - Can migrate out of bloodstream
 - Have amoeboid movement
 - Attracted to chemical stimuli (positive chemotaxis)
 - Some are phagocytic:
 - neutrophils, eosinophils, and monocytes

- Types of WBCs
 - 1. Granulocytes contain tiny granules
 - Neutrophils
 - Eosinophils
 - Basophils

- Types of WBCs
 - 2. Agranulocytes don't contain tiny granules
 - Monocytes
 - Lymphocytes
 - T cells
 - B cells
 - NK (natural killer) cells

- Neutrophils
 - 50–70% of circulating WBCs
 - Pale cytoplasm granules with
 - Lysosomal enzymes
 - Bactericides (hydrogen peroxide and superoxide)

- Neutrophil Action
 - Very active, first to attack bacteria
 - Engulf pathogens
 - Digest pathogens
 - Degranulation:
 - removing granules from cytoplasm
 - defensins (peptides from lysosomes) attack pathogen membranes
 - Release prostaglandins and leukotrienes
 - Form pus

- Eosinophils
 - 2–4% of circulating WBCs
 - Attack large parasites
 - Excrete toxic compounds
 - Nitric oxide
 - Cytotoxic enzymes
 - Are sensitive to allergens
 - Control inflammation with enzymes that counteract inflammatory effects of neutrophils and mast cells

- Basophils
 - Are less than 1% of circulating WBCs
 - Are small
 - Accumulate in damaged tissue
 - Release histamine
 - Dilates blood vessels
 - Release heparin
 - Prevents blood clotting

- Monocytes
 - 2–8% of circulating WBCs
 - Are large and spherical
 - Enter peripheral tissues and become macrophages
 - Engulf large particles and pathogens
 - Secrete substances that attract immune system cells and fibrocytes to injured area

- Lymphocytes
 - 20–30% of circulating WBCs
 - Are larger than RBCs
 - Migrate in and out of blood
 - Mostly in connective tissues and lymphoid organs
 - Are part of the body's specific defense system

- Three Classes of Lymphocytes
 - T cells
 - Cell-mediated immunity
 - Attack foreign cells directly
 - B cells
 - Humoral immunity
 - Differentiate into plasma cells
 - Synthesize antibodies
 - Natural killer (NK) cells
 - Detect and destroy abnormal tissue cells (cancers)

- WBC Disorders
 - Leukopenia
 - Abnormally low WBC count
 - Leukocytosis
 - Abnormally high WBC count
 - Leukemia
 - Extremely high WBC count

- Cell fragments involved in human clotting system
 - Nonmammalian vertebrates have thrombocytes (nucleated cells)
- Circulate for 9–12 days
- Are removed by spleen
- 2/3 are reserved for emergencies

- Platelet Counts
 - Thrombocytopenia
 - Abnormally low platelet count
 - Thrombocytosis
 - Abnormally high platelet count

- Three Functions of Platelets:
 - 1. Release important clotting chemicals
 - 2. Temporarily patch damaged vessel walls
 - 3. Actively contract tissue after clot formation

- Platelet Production
 - Also called thrombocytopoiesis
 - Occurs in bone marrow
 - Megakaryocytes
 - Giant cells in bone marrow
 - Manufacture platelets from cytoplasm