IN FOCUS:
QCOM Superstars Put Their Bold New Research Theories to the Test
DEAN’S MESSAGE:

Looking into the Changing Face(s) of Medicine

by Philip C. Bagnell, M.D., Dean of Medicine

Fall is an invigorating season at the Quillen College of Medicine -- new students are eager to begin their studies, upper class students are enthusiastic about a fresh new year, and the faculty and staff are ready to roll! This fall we have enrolled the largest class ever. Sixty-six students started in August with our new M1 curriculum which includes all of gross anatomy in the first eleven weeks.

Additionally, we have six new Ph.D.-seeking graduate students who have enrolled in the Biomedical Science Graduate Program. Under the direction of Dr. Mitch Robinson, Associate Dean for Graduate Studies, these students are privileged to learn from exceptional research scientists in both the basic and clinical science departments. In this issue of LifeLines, we focus on the college’s research enterprise, highlighting the educational program and select faculty.

As always, we hope that you enjoy learning more about your Quillen College of Medicine. We’d also like to hear from you, so please stay in touch.

A Statistical Look at the Class of 2013

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicants</td>
<td>1445 (from 44 states and Puerto Rico)</td>
</tr>
<tr>
<td>Accepted</td>
<td>66 (from 36 distinct undergraduate institutions; ETSU 18, UT Knoxville 10, David Lipscomb 4, Clemson 3)</td>
</tr>
<tr>
<td>Mean MCAT</td>
<td>27</td>
</tr>
<tr>
<td>Mean GPA</td>
<td>3.68</td>
</tr>
<tr>
<td>Mean age</td>
<td>24</td>
</tr>
<tr>
<td>Advanced degrees</td>
<td>MBA, MPH (3), MPAS, MS in plant and environmental science</td>
</tr>
</tbody>
</table>

Quillen College of Medicine Dean
Dr. Philip C. Bagnell

2 Looking into the Changing Faces(s) of Medicine
A Statistical Look at the Class of 2013
3 A Winning Formula
4 The Mighty Micro Hunter
5 Baseball, Medicine, and the Art of the Game
6 Tag Teaming the Brain/Heart Connection
8 QCOM Fall 2009 Reunion Weekend Highlights
11 Malone Presents Second Annual Alumni Society Lecture
About the Life Lines Cover
8 Class of 2009 Leaves a Legacy…

QCOM Life Lines
Fall 2009

Editorial Board
David Linville, M.D. Tom Kwasiqroch, Ph.D.
Ken Olive, M.D. Carol Sloan
Joe Smith Barbara Sucher
Suresh Ponnappa

Editorial Assistant
Martha Whaley

Art Director Writer
Robin Fisher Jill Fair

Photography / Photo Editing
Bryan Albritton Jill Fair Jonathan Laing
Pat Elledge ETSU Photo Lab

QCOM Life Lines is published quarterly by the department of Biomedical Communications at the James H. Quillen College of Medicine.

Email us to receive online publications: qcomalumnisociety@etsu.edu.

East Tennessee State University is a Tennessee Board of Regents institution and is fully in accord with the belief that educational and employment opportunities should be available to all eligible persons without regard to age, gender, color, race, religion, national origin, disability, veteran status, or sexual orientation. Designed by Biomedical Communications. Printed at Sabre Printers. TBR 260-046-09 6.5M
A Winning Formula
One Moment, One Student, One Program
by Jill Fair

On any given day across the campus at Quillen College of Medicine (QCOM) enthusiastic students dash hurriedly from place to place. Perhaps they claim a type of kinship because they appear to share similar traits: eagerness in the step, gleam of determination in the eye, ambition, a driving force. No doubt each student has an inspiring personal story of how he or she arrived at QCOM and a vision of the journey ahead once the hard work here is done.

Some of these enthusiastic scholars are headed to QCOM research laboratories as students of the Biomedical Science Graduate Program, an interdisciplinary Ph.D. program for those seeking careers in medical research. Graduates of the program receive a degree in Biomedical Science with a concentration in one of five areas of basic science: Anatomy and Cell Biology, Biochemistry and Molecular Biology, Microbiology, Pharmacology, or Physiology. “What makes this program unique,” says Dr. Mitchell Robinson, Associate Dean for Graduate Studies, “is that we try to tailor it to serve exactly what the students want to accomplish. There is no molded, one-size-fits-all philosophy in the curriculum. This program involves all the basic science programs as well as the clinical program. It’s a decision we made 10 years ago and it’s been a real benefit for the students.”

Initially, the curriculum emphasizes basic subjects such as cell biology and biochemistry. “The students first have the opportunity to attend discussions with all the faculty and learn more about what everyone is doing,” Robinson says. “Next they choose three laboratories which they will rotate through in order to determine more about the research and lab environments they’re interested in. Students learn how to use critical thinking as an approach - think as a scientist - how to design their own experiments.” After the first year, the student is equipped with the knowledge needed to choose a research advisor.

This was the process followed by one student, Moises “Mo” Serrano, when he joined the program four years ago. “He came here as an athlete,” says Robinson, with a smile. “And he stayed here as a scientist-in-training.” Serrano first arrived at East Tennessee State University (ETSU) from Cartagena, Colombia, to play tennis. Dr. Robinson now cites Serrano as a “success story” in his own right. He recently won an outstanding research award for the university when he received a substantial pre-doctoral grant from the National Institutes of Health (NIH) for research that pays his own expenses. “This is an almost unheard of accomplishment,” says Robinson. The process took Serrano a year and a half and two submissions. Serrano agrees with Robinson, saying this has been his single biggest accomplishment.

Serrano was in a Colombian university majoring in Electrical Engineering when he received a call from an ETSU coach. “I played tennis all my life and I hoped it was a way for me to succeed and try other things,” he explains. “I looked for opportunities to come to the United States because college sports are much more popular here.” Serrano says his hopes were beginning to dwindle when the call finally came. A friend, also a tennis player, had been contacted by ETSU. He had already signed with another university but he mentioned Serrano. This became the first of a string of calls from a number of universities, but Serrano chose ETSU due to the competitive scholarship. “I played four years,” he says. He made the All Conference Team and was awarded Most Valuable Player his first year in the conference.

“I’ve enjoyed my time here… the whole environment. I knew I wanted to go to graduate school from the beginning,” Serrano says. Science, math and biology interests were encouraged by his mother, a doctor (anesthesiologist), and his father, physics and math professor. “I wanted to be involved in medical physics when I first received my degree, and then I learned about this program. I applied and started interviewing the professors and that’s when I decided I really liked it.” Although two other medical schools accepted Serrano, he wanted to be at QCOM. The atmosphere, attitude of the faculty, and the program organization made the decision easy. “I felt really welcomed. One thing that attracted me to this program was that it was okay that I first didn’t know what I wanted to do,” he says. “The first year I didn’t have to choose; it was like a trial. The second year I could pick what I really liked after I had a chance to explore. Dr. Robinson has always been there for me and has always helped me. I felt like he cared about what I wanted to do.”

Serrano, who chose as his academic advisor Professor Yue Zou, Ph.D., is involved in cancer research. “I saw an open field with limitless possibilities,” Serrano says. “Choosing Dr. Zou as a mentor meant he would push me, teaching me so I could accomplish my best.” Serrano talks of his involvement in two very interesting projects. One is cancer research in DNA repair; the second focuses on Progeria, a rare disease that produces rapid aging beginning in childhood. “We have made a lot of progress, which is very exciting.” Students of the Biomedical Science Graduate Program have the opportunity to work on their own research projects, eventually leading to publication, and they present their research locally, regionally and nationally. The rigorous curriculum demands hard work, including many lab hours. Even so, as Robinson explains, the students are up for the challenges and the close interaction between the students and faculty makes the difference.

Dr. Robinson is proud of the accomplishments of program graduates. “They have gone from here to accomplish a number of good things. Some are conducting research at Yale, Emory, Duke and Vanderbilt. Other students have academic positions. Some are teaching; some are doing research in academic or pharmaceutical communities. Some have even started their own companies. Dr. Doug Corrigan and Dr. Brent Lockhart founded ProteoGenesis, LLC, working in partnership with the East Tennessee Research Foundation and the ETSU Innovation Lab. We try to give the students what they need. There is so much they can do.”

The next time you happen to see a student scurrying along, remember your introduction to Mo. Pause for a moment and give thought to what these students just might accomplish in the future. A cure for cancer, a successful treatment plan for a desperate patient, a routine exam that is anything but that for a young child — consider for a moment that the time spent here, and the resulting actions, might just have an impact on…you.
“Dr. Manire let me ‘play’ in his laboratory with his electron microscope, and I would listen in on their research discussions about chlamydia,” Wyrick said. “It was fascinating!”

An opportunity for mutual discussion soon came with a morphological form of chlamydia that was discovered by electron microscopy and closely resembled a rare form of streptococcus. The research team consulted with Wyrick, and, as they say, the rest is history. She joined the UNC-Chapel Hill faculty in 1973 following a Postdoctoral Fellowship at the National Institute for Medical Research at Mill Hill in London, England.

At that time, new information was coming forward regarding chlamydia, including the confirmation that it was, in fact, a cause of STDs, particularly among young people, and ophthalmologists had linked infections as a contributor to blindness.

Doors to obtain NIH funding for chlamydia research began to open, and though there were only a limited number of scientists in this field, obtaining a grant was going to be competitive. And researchers had many questions. Unlike other bacteria, chlamydiae only live and grow inside epithelial cells, and the immune response that is triggered can be more damaging than protective.

“We knew they lived in epithelial cells, but what really puzzled us was that we did not understand how chlamydiae were able to enter into the cells,” Wyrick said.

In their labs, scientists were growing and studying the bacteria in petri dishes, but Wyrick sought a view from a different vantage point. She began growing primary human genital epithelial cells on filter paper. The result of this approach was a polarized orientation model, a structural architecture similar to the growth of the cells in the human body.

Little did Wyrick know that this would become a landmark research advancement. “It (the polarized model of endometrial epithelial cells) led us to discover that chlamydiae actually enter the epithelial cells through special structures known as clathrin-coated pits, the same pirated by cholesterol into human cells,” she said. “In addition, the polarized orientation also allows epithelia to retain their hormone responsiveness, and it was from that we learned that if chlamydiae infect women during the estrogen-dominant phase of their menstrual cycle, the infection may be more acute and cause more damage.”

The adverse consequences of chlamydial infection during the estrogen phase are the main focus of Wyrick’s work in the lab today.

The model was also used to analyze the efficacy of various antibiotics that led the Food and Drug Administration to approve Azithromycin, which is the Centers for Disease Control and Prevention’s recommended antibiotic for the treatment of chlamydial infections.

Wyrick retired from UNC-Chapel Hill in 2000 to take the Chair’s position in QCOM Department of Microbiology. At UNC, she was one of 33 faculty members in her department. At ETSU, she leads a department of eight. “I really enjoy helping grow a medical school and being able to mentor faculty members, particularly in their pursuit of extramural funding,” said Wyrick who, in her free time, enjoys golf, listening to classical music, and reading.

“I just love it here.”

The picture is grim, but the warrior is steadfast.

Chlamydia is the leading cause of bacterial sexually transmitted diseases (STDs) resulting in more infections than gonorrhoeae, syphilis, chancroid, and the AIDS virus combined. Annually, the infection rate is approximately 100 million new cases worldwide, and 62 percent are 12-16 years old.

Most persons infected have no symptoms, as 85 percent of females and 75 percent of males are asymptomatic. Young males are at risk for complications, such as prostatitis and epididymitis, while young women face an elevated risk rate for pelvic inflammatory disease, ectopic pregnancy, and infertility.

When chlamydia first emerged, researchers tagged it as a virus and believed it did not cause sexually transmitted diseases. They were wrong on both counts.

Dr. Priscilla Wyrick, Chair of Microbiology at the ETSU Quillen College of Medicine (QCOM), remembers those days. She has spent the majority of her 35-year research career chasing chlamydia, which, by the way, later proved to be a bacterium.

And it has been an impressive career at that. For 30 years, she has maintained continuous funding from the National Institutes of Health (NIH) in support of her research. She is also a member of the American Academy of Microbiology and an elected Fellow of the American Association for the Advancement of Science.

Her pursuit of answers began at her alma mater, the University of North Carolina – Chapel Hill where she worked in the lab of Dr. Harry Gooder on streptococcus. But, just one research bench away was the lab of Dr. Phil Manire, a world-renowned pioneer in chlamydia research, and her interest in chlamydia was about to be piqued.

The Mighty Microbe Hunter

by Joe Smith, Director of Media Relations for ETSU

Dr. Priscilla Wyrick prowls through electron microscope images of chlamydia-infected genital tissue.
Managing is like holding a dove in your hand,” said Tommy La-Sorda, former Major League baseball pitcher, manager, and National Baseball Hall of Famer. “Squeeze too hard and you kill it; not hard enough and it flies away.”

Similar analogies about “America’s game” are often used, especially when a team concept is the focus. It makes sense that Dr. Thomas Watson Jernigan, Interim Chair, Department of Obstetrics and Gynecology (OB/GYN), Quillen College of Medicine (QCOM), uses this analogy to characterize his management style. Baseball has been his fond pastime for many years.

“We’re building our team. I act as the team manager, interacting with the coaches and players,” Jernigan says. “Together we will move forward and accept the challenges of the future. If we’re to adapt, accept and excel in the uncertain times ahead we have to define our roles. They are yet to be completely defined, but we are modeling them after a baseball team.” He adds, “Behind every successful team manager is an excellent general manager. Linda Wright Jernigan is that for me. I take the problems of the field home to her. She has kept me grounded for nearly 27 years.”

To some, it may seem flippant to utilize such a comparison, but Jernigan is serious about the department; his focus on the oncoming ball; the hit; the win. If the game plan is weak, the outcome could be threatened by a difficult economy and impending changes to our nation’s health care system. “These are very challenging times,” Jernigan says. “Without a clear understanding of the ‘team’ concept, we do not overcome the challenges.” He remembers that concept even from QCOM’s early days as he taught the first class in 1979. He first served as departmental interim chairman from 1994-95. “The QCOM/ETSU Physicians and Associates has always been ahead of the game,” he says, as he recalls the decision to bring together the specialties, a popular consolidation move today in other practices. “At that time the various specialties were spanned in different locations. The Palma L. Robinson Building was built to bring it all under one roof.” This was an early step by QCOM in creating a new environment that would offer the patient one location and convenient coordination of visits with multiple doctors and specialties. An additional bonus was that this model brought together physicians with dual specialties and consolidated the business aspects of medical practice.

With a background that includes thirty years of direct patient care and a true love and appreciation for ETSU and QCOM, Jernigan is uniquely qualified to fulfill his duties as interim chair of the department. “Something which lured me back to QCOM was the opportunity to impact future health care through close interaction with the students and residents.” Jernigan continues, “Each one of us owes a debt of gratitude to Dr. Martin Olsen, former chair, for his leadership and guidance in bringing the department to this point, and now my challenges reside in bringing it forward from here. How exactly do we move forward in the twenty-first century - integrating high-quality health care with the constantly changing world of medicine? We will have to wait to see how our challenges will be defined. Regardless, we cannot lose sight of a basic premise: one patient, one doctor, one care. We are here, the department…the QCOM…to interact with the community to achieve better medical care.”

Dr. Tom Jernigan, Interim Chair for the Department of Obstetrics and Gynecology, fields questions at the new ETSU Softball Stadium. According to Tom Trent, Director of Facilities/Operations, the first game in the stadium was played in the Spring of 2009 after the completion of phase one construction. To read about the stadium’s features and upcoming phase two construction, go to: www.etsu.edu/rh/pages/athletics/softball_s.html.

Dr. Jernigan believes the key to superior care is found in the physician/patient relationship. He explains further, “While I am a

“Baseball, Medicine and The Art of the Game” continues on page 12.
Seeking Light for the Darkness of Depression

Depression is a major cause of illness and death in the United States. A study published in 2008 by the Centers for Disease Control and Prevention (CDC) reveals a stunning statistic: at the time of the survey more than one in 20 Americans, 12 years and older, had depression. The same survey found that 10-12 percent of Tennessee residents had depression. The World Health Organization has reported that major depression is the leading cause of disability worldwide. In the face of such unsettling statistics, one may wonder why so many people are affected and whether medical science will be able to lift the darkness of the disease.

At Quillen College of Medicine (QCOM), research teams are in pursuit of answers to those questions. In 2008 Gregory Ordway, Ph.D., Professor and Chair of Pharmacology, QCOM, received a $1.6 million grant from the National Institute of Mental Health (NIMH) for such research. “The vast majority easily believe the heart can have biological problems and that there is pathology involved,” Ordway says. “But many people have problems believing the brain, also an organ, can have similar pathology. The brain just happens to be a complex major organ. It can have pathology just like the liver, the pancreas and the heart.” Specifically, Dr. Ordway’s area of research is the study of the biological basis of clinical depression and the molecular mechanisms of antidepressant drugs.

“We are trying to understand the pathology of an illness that really needs better drug treatment,” he states. Typical treatment for a person suffering from depression involves a combination of medications and counseling. Ordway says 27 million prescriptions for antidepressants were written in 2005 in the United States. “The antidepressant drugs currently on the market are relatively minor modifications of drugs that were discovered through serendipity,” Ordway explains. “The discovery of the first antidepressant was really an accident and occurred back in the 1950s. While advancements have been made in the safety of the drugs, there has been no real advancement in the field in terms of greater antidepressant effects since that time.”

Dr. Ordway has spent more than 20 years collaborating with psychiatrists on the study of depression. From a clinical perspective, the real problem in treatment translates to the effectiveness of medications prescribed. “The probability of improvement is 30 percent the first time an antidepressant is prescribed,” Ordway says. “The physician typically will change the prescription to a different medication and again there is a 30 percent probability of improvement. Generally, a patient might see a 60-70 percent chance of improvement after three or four drugs. Often, even that improvement does not mean the patient is back to normal.”

The bottom line is that current medications fall short of the mark. So, the focus changes. Perhaps the odds of effective treatment may be improved through the discovery of the pathological basis of the disorder, at the level of brain cells. “The big problem in the field, in my estimation, is that the pathology eludes us,” Ordway says. His hopes lie in his research. “To study depression biology, we utilize brain tissue from humans who have either committed suicide or have died from accidental or natural causes, all of whom have had psychiatric diagnoses made post-mortem using a rigorous retrospective psychological examination through first-degree family members.”

Information is processed and transmitted within the brain by an estimated 100 billion highly specialized cells called neurons. Approximately 10 times that many glial cells work with neurons by providing vital support, protection, and facilitating information flow.

Ordway continues, “Your brain is mostly glia, by mass. We and others have found deficits in glial cells and this has led us to investigate the relationship between the neurons that are targeted by antidepressant drugs and their surrounding glia. You really couldn’t tackle this problem 10 years ago. However, a new technique, laser capture microdissection (LCM), provides a method for isolating individual cells of interest from frozen tissue that has been sectioned. “We know what types of cells antidepressants target so we can now individually study those cells and investigate their relationship to local supportive glial cells. It’s a slow, methodical process, but we are very determined to find clues to initiate the development of more effective treatments for depression.”

Ordway says his team of researchers is thinking in new and different ways as they seek and obtain new research dollars. For example, he says, “Since we’ve perfected the methods in research as it pertains to depression and suicide, we’d like to apply them to autism.” Michelle Chandley, a research fellow in the department, spearheaded this effort. “When I joined Dr. Ordway’s staff a year ago I knew beforehand that he utilized the most advanced molecular biology techniques to evaluate biochemical abnormalities in postmortem brain tissue from people affected with major depressive disorder,” Chandley says. “What I did not realize was how applicable those techniques would be in other areas of brain research, especially in autism.”

Chandley explains that the debilitating disorder affects 1 in 150 people, and yet little is known about what causes this illness. “In our efforts to understand the biology of the brain in autism, we are finding interesting things about the brain in depression as well,” she says.

Dr. Gregory Ordway (left) and Dr. Jeffrey Ardell (next page) hold a unique perspective in their field of research.
Ardell (Associate Chair/Professor in the department) and I are doing some other current research, which may result in additional grant funding, components of the social center of the brain. Dr. Ordway’s laboratory about its biological basis. She continues, “One of the areas of the brain that has currently been implicated as a possible source of abnormality in autism is the amygdala. The amygdala is regarded as one of the main components of the social center of the brain. Dr. Ordway’s laboratory studies specialize in several specific regions of the brain, one of which is the amygdala.” Chandley says only a handful of laboratories in the country possess the ability to study the human amygdala adequately. “We hope to have a clinical autism expert to help with this,” Ordway adds.

Other current research, which may result in additional grant funding, involves the merging of two fields: neuroscience and cardiology. “Dr. Jeffrey Ardell (Associate Chair/Professor in the department) and I are doing some really interesting research as we try to understand how neurons change after a myocardial infarct using LCM. We literally go into the “mini-brains” (ganglia) of the heart to investigate molecular remodeling that occurs after a simulated heart attack.” He continues, “This reflects the direction I’d like to see this department move in the future…merging fields, thinking in different ways. With neuroscience and cardiovascular researchers side by side, the approach gives us a unique perspective on illness that may increase our chances of novel discoveries and increase our chance of successful funding from the NIH. I’d like to see us expand and make those connections with other departments and disciplines. In the current funding climate, which we all know is not very good, our opportunity for success is likely to be greatly enhanced by novel approaches to the study of disease, and this is done by challenging yourself to take on some risks and to cross disciplinary boundaries.”

Venture to Wonder What the Heart…Thinks

The relatively new discipline of neurocardiology emerged when small groups of cardiovascular researchers and neurophysiologists combined their research efforts. Neurocardiology is the study of the interaction of the human brain with the heart’s intrinsic cardiac nervous system (ICNS), also called the “mini-brain”. The intricate network of the “mini-brain” has the ability to learn and adapt to changing conditions, such as heart disease, and this cardiac nervous system is now recognized as an effective target for treatment of heart attacks and heart failure.

Jeffrey Ardell, Ph.D., Associate Chair/Professor, Department of Pharmacology, Quillen College of Medicine (QCOM) is a neurocardiology researcher. A recipient of the 2007 Distinguished Faculty Award for Research, Ardell is internationally recognized for his groundbreaking ICNS work. Funded by the National Institutes of Health (NIH), the American Heart Association (AHA) and the Canadian Institutes of Health Research, his projects have brought more than $1.73 million directly to the college.

Dr. Ardell’s research explains how the nerves and heart interact to control the cardiovascular function. The ICNS has been called an intelligent information-processing center, which, according to one researcher, directly affects how we perceive and interact with the world. Most people aren’t accustomed to thinking about the heart in this way. Ardell says, “Your brain and your heart are intimately interconnected. Your brain influences your heart and your heart influences your entire nervous system.”

If the heart really is an intelligent organ, what are the effects of high stress on its functionality? According to the AHA, cardiovascular disease is the single leading cause of death in America today. Yearly, about 309,000 die of a coronary attack, most of which are sudden deaths caused by cardiac arrest. “In heart disease,” Ordway explains, “there is a genetic component and an environmental component. You are stuck with your genetics, but you can change the environment.” He continues, “I like to think of it as Zen cardiology. When you are in balance between the heart and brain, you do well. When you get out of balance you start having things go wrong.” Dr. Ardell’s laboratory has pioneered work in using electrical stimulation of the spinal cord to restore balance in the cardiac nervous system, thus preventing adverse effects associated with heart attacks.

Ardell also says that behavior exhibited by the ICNS is triggered by the stress of a myocardial ischemia or infarction, which can cause the patient to go into fibrillation, the leading cause of death following a heart attack. Basic and Clinical Neurocardiology, a textbook edited by Ardell and Dr. J. Andrew Armour, states that it is unclear why some patients experience sudden death when cardiac function is severely compromised, and others do not. Ardell is especially interested in how the ICNS reorganizes in disease states, and one of his goals is to develop treatment to avoid sudden death.

Both Ardell and Dr. Gregory Ordway, departmental chair, speak of the biological and the behavioral mechanisms at work with depression and heart disease, both as separate and linked conditions. They take a new approach by joining forces in order to examine the heart and brain interactions from the whole body level to the sub-cellular level. Ordway has been applying a new technique, laser capture microdissection (LCM), in his own research of brain tissue. The same method of isolating individual cells of interest will be applied in this joint research using heart and neural tissue. “Researchers are able to mark neurons with tracers and pick them out using LCM and study how they are organized,” Ardell says. “Using a combination of nerve recording and microdialysis we can determine what is released from those very same neurons and then analyze how they respond to the various stressors.”

In addition to Ardell’s research, he has served as a mentor to future scientists since 1999 through the Health Science Summer Fellowship in Neurocardiology. The program is funded by the AHA with additional support from mentors and chairs, and matching funds from the QCOM Dean. The program averages six to ten students per summer and is usually done between the first and second year of medical school. “We’ve placed these medical students virtually in every single department working in basic and clinical research areas,” Ardell says. “The QCOM faculty and administration recognize the importance of providing a research experience for our medical students with the ultimate goal of attracting the best and brightest in medicine. We wish to create the next generation of academic physicians and as part of that, the students have to understand the research method and how to apply it. The program has been a very positive experience.”
The Quillen Alumni Society hosted a successful Reunion Weekend on September 18 and 19, 2009. Reunion classes were 1984, 1989, and 2004. All Quillen alums were invited to attend the weekend events and members of the Classes of 1982, 1988, 1992, and 2003 also joined the festivities.

The weekend activities began on Friday afternoon at the Alumni golf tournament at Cattails at Meadowview in Kingsport. On Friday evening, Dean of Medicine, Dr. Philip Bagnell and his wife, Heather, hosted a wine tasting at the Carnegie Hotel in Johnson City. The group was officially welcomed by Dr. Bagnell and Dr. Kyle Colvett, President of the Quillen Alumni Society. Following the wine tasting, the Class of 1984 was hosted by classmate, Dr. Tony Katras, at Alley Kat Sandwich Shop for an informal gathering. The Class of 2004 gathered at Stir Fry, one of their favorite restaurants from their time at Quillen.
Kwasigrochs Host Tailgate Party

Reunion Weekend activities continued on Saturday with a Tailgate Party at the home of Dr. and Mrs. Tom Kwasigroch. “Kwas” and Chris graciously offered to host three alumni events this year, culminating with the reunion event. The threatening afternoon rain held off and grilling and the Saturday football games went on as scheduled. Conversations which were initiated on Friday night continued, with some new attendees arriving and joining in on the fun. The Quillen Alumni Society has posted additional photos on the QCOM web site, www.etsu.edu/com.

Mark Your Calendar!

2010 Quillen College of Medicine Reunion Weekend
August 6 & 7, 2010

Quarter Century Club

Reunion Classes of

QCOM Life Lines | 9
Loyds and Magees Organize Reunion for QCOM Class of 1999

Steve and Karen Loyd and Mike and Michelle Magee worked tirelessly to bring together members of the Class of 1999 on August 7th and 8th. They planned, called, emailed, provided photos and enthusiastically hosted the weekend’s activities. Special thanks to Karen and Steve for hosting the group at a Saturday afternoon pool party at their lovely home. Prior to the pool party, Steve led an extensive and informative tour of the College of Medicine facilities for a group of interested alums. On Saturday evening the Class of 1999 enjoyed fine food and entertaining music at Old Quarters in Jonesborough to conclude the weekend. For more photos, visit the QCOM web site, www.etsu.edu/com.

To donate to the Quillen College of Medicine, please call 423-439-4242 or visit the QCOM web site at: www.etsu.edu/com and click on Giving.
About the cover:
The shoot for Life Lines cover photo-illustration took place in the department of Internal Medicine’s Human Research Immunology Laboratory. Special thanks go to Kenton Hall, Lab Manager for Internal Medicine Research, who assisted the photographer in the realization of the “perfect shot.”
Class of 2009 Leaves a Legacy of Support for Future Medical Students

As the Class of 2009 graduated in May, they decided to leave a legacy for the future. Class officers met with staff members of QCOM’s Office of Student Affairs and Advancement to discuss options for money the students raised during the year. Class President, Josh Combs, says, “As a result, our class founded The Class of 2009 Medical Student Emergency Fund.” Established in the ETSU Foundation, the fund provides financial assistance for medical students experiencing a medical emergency. Dr. Combs and his classmates encourage other medical student classes to help sustain the fund. “We’re all aware of students who have personal or family medical emergencies during medical school and need support,” he said. “Our class members thought this fund would be a good way to address those needs.” For more information or to allocate a gift to the fund, call 423-439-4242.

“Baseball, Medicine, and The Art of the Game” continued from page 5.

forward thinker, I’m grounded historically with the good aspects of patient care and medicine from the past. I want to be able to make a difference, and to do that I appreciate the historical aspects of medicine. There is a theme throughout time with the physician/patient relationship that approaches the real essence of it. It is the personal relationship that will make the difference in care. I’ve learned that from my years of working with patients.”

The sub-specialties of Maternal Fetal Medicine, Reproductive Endocrinology and Infertility, Oncology and Urogynecology comprise the Department of OB/GYN. “Our newest addition is the region’s first,” says Jernigan, speaking of Dr. R. Keith Huffaker, a sub-specialist in Female Pelvic Medicine and Reconstructive Surgery, also known as Urogynecology. “This specialty is just now forming and it is exciting for us to have the capability to provide this whole new perspective of care for our patients.”

In conclusion, Dr. Jernigan notes that winning the game - the success of the group - doesn’t completely fall on the department alone. He describes the circle of teamwork of the QCOM as a whole and how contributions of each person will ultimately achieve the goal. “Our days should be about making the best of the future by whatever abilities God gives us,” Jernigan observes. “The care the physician provides is enhanced by the physician’s ability to harvest the research and successfully apply it to medicine. We’re all about evidence-based medicine here. We need the research. As the physician, you must embrace that, and learn how it will impact the patient’s life. That’s the science of medicine. Now, translate it into the art of medicine and you have the physician/patient relationship. That art impacts the patient’s life.” He concludes, “We’re all scientists to some degree. As the physician, the key is finding where science ends and something else begins so the translation into the art can impact a life.”

Left to right: Class of 2009 medical students Rachel Jestrab, Josh Combs, Bethany Mayes, Zakiya Donelson, and Nikol Hall. They, along with their fellow classmates, look ahead to life after graduation and have already chosen to give back.