SECTION 23.05.93
TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 – GENERAL

1.01 SECTION INCLUDES

A. Testing, adjustment, and balancing of air systems.
B. Testing, adjustment, and balancing of hydronic systems.
C. Measurement of final operating condition of HVAC systems.
D. Sound measurement of equipment operating conditions.
E. Vibration measurement of equipment operating conditions.
F. Commissioning activities.

1.02 REFERENCES

A. AABC MN-1 - AABC National Standards for Total System Balance; Associated Air Balance Council.
D. SMACNA (TAB) - HVAC Systems Testing, Adjusting, and Balancing; Sheet Metal and Air Conditioning Contractors’ National Association.

1.03 SUBMITTALS

A. Qualifications: Submit name of adjusting and balancing agency and TAB supervisor for approval within 30 days after award of Contract.
B. Final Report: Indicate deficiencies in systems that would prevent proper testing, adjusting, and balancing of systems and equipment to achieve specified performance.
 1. Submit to the Engineer within two weeks after completion of testing, adjusting, and balancing.
 2. Submit draft copies of report for review prior to final acceptance of Project. Provide final copies for Architect and for inclusion in operating and maintenance manuals.
 3. Provide reports in 3-ring binder manuals, complete with index page and indexing tabs, with cover identification at front and side. Include set of reduced drawings with air outlets and equipment identified to correspond with data sheets, and indicating thermostat locations.
 4. Include actual instrument list, with manufacturer name, serial number, and date of calibration.
 5. Form of Test Reports: Where the TAB standard being followed recommends a report format use that; otherwise, follow ASHRAE Std 111.
 6. Units of Measure: Report data in I-P (inch-pound) units only.
 7. Include the following on the title page of each report:
 a. Name of Testing, Adjusting, and Balancing Agency.
 b. Address of Testing, Adjusting, and Balancing Agency.
 c. Telephone number of Testing, Adjusting, and Balancing Agency.
 d. Project name.
 e. Project location.
 f. Project Architect.
 g. Project Engineer.
 h. Project Contractor.
i. Project altitude.

j. Report date.

C. Project Record Documents: Record actual locations of flow measuring stations and balancing valves and rough setting.

1.04 QUALITY ASSURANCE (moved to PART 3)

1.05 PRE-BALANCING MEETING (moved to PART 3)

1.06 SEQUENCING AND SCHEDULING (moved to PART 3)

1.07 WARRANTY (moved to PART 3)

PART 2 – PRODUCTS - NOT USED

PART 3 – EXECUTION

3.01 GENERAL REQUIREMENTS

A. Perform total system balance in accordance with one of the following:

1. AABC MN-1, AABC National Standards for Total System Balance.
5. Maintain at least one copy of the standard to be used at project site at all times.

B. Begin work after completion of systems to be tested, adjusted, or balanced and complete work prior to Substantial Completion of the project.

C. Where HVAC systems and/or components interface with life safety systems, including fire and smoke detection, alarm, and control, coordinate scheduling and testing and inspection procedures with the authorities having jurisdiction.

D. TAB Agency Qualifications:

1. Company specializing in the testing, adjusting, and balancing of systems specified in this section.
2. Having minimum of 5 years documented experience.
3. Certified by one of the following:

E. TAB Supervisor Qualifications: Certified by same organization as TAB agency.

3.02 EXAMINATION

A. Verify that systems are complete and operable before commencing work. Ensure the following conditions:

1. Systems are started and operating in a safe and normal condition.
2. Temperature control systems are installed complete and operable.
3. Proper thermal overload protection is in place for electrical equipment.
4. Final filters are clean and in place. If required, install temporary media in addition to final filters.
5. Duct systems are clean of debris.
6. Fans are rotating correctly.
7. Fire and volume dampers are in place and open.
8. Air coil fins are cleaned and combed.
9. Access doors are closed and duct end caps are in place.
10. Air outlets are installed and connected.
11. Duct system leakage is minimized.
12. Hydronic systems are flushed, filled, and vented.
13. Pumps are rotating correctly.
14. Proper strainer baskets are clean and in place.
15. Service and balance valves are open.

B. Submit field reports. Report defects and deficiencies noted during performance of services which prevent system balance.

C. Beginning of work means acceptance of existing conditions.

3.03 PREPARATION

A. Hold a pre-balancing meeting at least one week prior to starting TAB work.
1. Require attendance by all installers whose work will be tested, adjusted, or balanced.

B. Provide instruments required for testing, adjusting, and balancing operations. Make instruments available to Architect to facilitate spot checks during testing.

C. Provide additional balancing devices as required.

3.04 INSTALLATION TOLERANCES

A. Air Handling Systems: Adjust to within plus or minus 5 percent of design for supply systems and plus or minus 10 percent of design for return and exhaust systems.

B. Air Outlets and Inlets: Adjust total to within plus 10 percent and minus 5 percent of design to space. Adjust outlets and inlets in space to within plus or minus 10 percent of design.

C. Hydronic Systems: Adjust to within plus or minus 10 percent of design.

3.05 RECORDING AND ADJUSTING

A. Field Logs: Maintain written logs including:
1. Running log of events and issues.
2. Discrepancies, deficient or uncompleted work by others.
4. Lists of completed tests.

B. Ensure recorded data represents actual measured or observed conditions.

C. Permanently mark settings of valves, dampers, and other adjustment devices allowing settings to be restored. Set and lock memory stops.

D. Mark on the drawings the locations where traverse and other critical measurements were taken and cross reference the location in the final report.

E. After adjustment, take measurements to verify balance has not been disrupted or that such disruption has been rectified.

F. Leave systems in proper working order, replacing belt guards, closing access doors, closing doors to electrical switch boxes, and restoring thermostats to specified settings.

G. At final inspection, recheck random selections of data recorded in report. Recheck points or areas as selected and witnessed by the Owner.

H. Check and adjust systems approximately six months after final acceptance and submit report.

3.06 AIR SYSTEM PROCEDURE

A. Adjust air handling and distribution systems to provide required or design supply, return, and exhaust air quantities at site altitude.
B. Make air quantity measurements in ducts by Pitot tube traverse of entire cross sectional area of duct.
C. Measure air quantities at air inlets and outlets.
D. Adjust distribution system to obtain uniform space temperatures free from objectionable drafts and noise.
E. Use volume control devices to regulate air quantities only to extend that adjustments do not create objectionable air motion or sound levels. Effect volume control by duct internal devices such as dampers and splitters.
F. Vary total system air quantities by adjustment of fan speeds. Provide drive changes required. Vary branch air quantities by damper regulation.
G. Provide system schematic with required and actual air quantities recorded at each outlet or inlet.
H. Measure static air pressure conditions on air supply units, including filter and coil pressure drops, and total pressure across the fan. Make allowances for 50 percent loading of filters.
I. Adjust outside air automatic dampers, outside air, return air, and exhaust dampers for design conditions.
J. Measure temperature conditions across outside air, return air, and exhaust dampers to check leakage.
K. Where modulating dampers are provided, take measurements and balance at extreme conditions.
L. Measure building static pressure and adjust supply, return, and exhaust air systems to provide required relationship between each to maintain approximately 0.05 inches (12.5 Pa) positive static pressure.

3.07 WATER SYSTEM PROCEDURE
A. Adjust water systems to provide required or design quantities.
B. Use calibrated fittings and pressure gauges to determine flow rates for system balance. Where flow metering devices are not installed, base flow balance on temperature difference across various heat transfer elements in the system.
C. Adjust systems to provide specified pressure drops and flows through heat transfer elements prior to thermal testing. Perform balancing by measurement of temperature differential in conjunction with air balancing.
D. Effect system balance with automatic control valves fully open to heat transfer elements.
E. Effect adjustment of water distribution systems by means of balancing cocks, valves, and fittings. Do not use service or shut-off valves for balancing unless indexed for balance point.
F. Where available pump capacity is less than total flow requirements or individual system parts, full flow in one part may be simulated by temporary restriction of flow to other parts.

3.08 SCOPE
A. Test, adjust, and balance the following:
 1. All existing systems impacted as well as new systems
 2. HVAC Pumps, Circuit Setters, and Flow Controls
 3. Heating/Cooling Units
 4. Air Handling Units
 5. Fans
 6. Air Filters
 7. Air Terminal Units
 8. Air Inlets and Outlets
 9. Recirculation of Potable Hot Water Systems
MINIMUM DATA TO BE REPORTED

A. Electric Motors:
 1. Manufacturer
 2. Model/Frame
 3. HP/BHP
 4. Phase, voltage, amperage; nameplate, actual, no load
 5. RPM
 6. Service factor
 7. Starter size, rating, heater elements
 8. Sheave Make/Size/Bore

B. V-Belt Drives:
 1. Identification/location
 2. Required driven RPM
 3. Driven sheave, diameter and RPM
 4. Belt, size and quantity
 5. Motor sheave diameter and RPM
 6. Center to center distance, maximum, minimum, and actual

C. Pumps:
 1. Identification/number
 2. Manufacturer
 3. Size/model
 4. Impeller
 5. Service
 6. Design flow rate, pressure drop, BHP
 7. Actual flow rate, pressure drop, BHP
 8. Discharge pressure
 9. Suction pressure
 10. Total operating head pressure
 11. Shut off, discharge and suction pressures
 12. Shut off, total head pressure

D. Air Moving Equipment:
 1. Location
 2. Manufacturer
 3. Model number
 4. Serial number
 5. Arrangement/Class/Discharge
 6. Air flow, specified and actual
 7. Return air flow, specified and actual
 8. Outside air flow, specified and actual
 9. Total static pressure (total external), specified and actual
 10. Inlet pressure
 11. Discharge pressure
 12. Sheave Make/Size/Bore
 13. Number of Belts/Make/Size
 14. Fan RPM
 15. Total HW and CHW flow, specified and actual

E. Return Air/Outside Air:
 1. Identification/location
 2. Design air flow
 3. Actual air flow
 4. Design return air flow
5. Actual return air flow
6. Design outside air flow
7. Actual outside air flow
8. Return air temperature
9. Outside air temperature

F. Exhaust Fans:
1. Location
2. Manufacturer
3. Model number
4. Serial number
5. Air flow, specified and actual
6. Total static pressure (total external), specified and actual
7. Inlet pressure
8. Discharge pressure
9. Sheave Make/Size/Bore
10. Number of Belts/Make/Size
11. Fan RPM

G. Duct Traverses:
1. System zone/branch
2. Duct size
3. Area
4. Design velocity
5. Design air flow
6. Test velocity
7. Test air flow
8. Duct static pressure
9. Air temperature
10. Air correction factor

H. Duct Leak Tests:
1. Description of ductwork under test
2. Duct design operating pressure
3. Duct design test static pressure
4. Duct capacity, air flow
5. Maximum allowable leakage duct capacity times leak factor
6. Test apparatus
 a. Blower
 b. Orifice, tube size
 c. Orifice size
 d. Calibrated
7. Test static pressure
8. Test orifice differential pressure
9. Leakage

I. Terminal Unit Data:
1. Manufacturer
2. Type, constant, variable, single, dual duct
3. Identification/number
4. Location
5. Model number
6. Size
7. Minimum static pressure
8. Minimum design air flow
9. Maximum design air flow
10. Maximum actual air flow
11. Inlet static pressure

J. Air Distribution Tests:
1. Air terminal number
2. Room number/location
3. Terminal type
4. Terminal size
5. Area factor
6. Design velocity
7. Design air flow
8. Test (final) velocity
9. Test (final) air flow
10. Percent of design air flow

K. Potable Water:
1. Location of circuit setter
2. Design Flow
3. Actual Flow

END OF SECTION