skip to main content columnskip to left navigationskip to horizontal navigation

Physics & Astronomy

College of Arts & Sciences

The primary mission of the Department of Physics & Astronomy Honors-In-Discipline program is to recognize and foster excellence in student achievement at East Tennessee State University by:

  • Recruiting academically talented and highly motivated students
  • Nurturing the intellectual growth of scholars by providing challenging curricula
  • Encouraging life-long learning and leadership
  • Instilling the desire to advance knowledge
  • Promoting continued studies in graduate school
  • Offering the Physics faculty the opportunity for innovative and unique teaching experiences
Who May Apply?
  • Entering freshman admitted to the Physics Honors program must have a minimum high school GPA of 3.5 overall on a 4.0 scale and an ACT composite score of 25 or SAT composite score of 1180.
  • Students entering the Physics Honors program after their first semester freshman year at ETSU, or physics majors in their second or later years at ETSU, must have a minimum overall GPA of 3.2 or a minimum GPA of 3.5 in Physics courses.
  • Transfer students into the Physics Honors program must have a minimum overall GPA of 3.5.
Applications & Admissions Procedures

Applications may be submitted over the Internet, by e-mail, or by post. Deadline is June 1. Applications will be reviewed by the program coordinator and two Physics Honors faculty. The applicant will be notified of his/her status within one month of receipt of the application. Please keep in mind that the ETSU Physics & Astronomy Department requests that entering freshmen have high school pre-calculus and physics.

Application for the Honors in Discipline Program

Financial Support

Tennessee Residents

Students accepted into the ETSU Department of Physics & Astronomy Honors-in-Discipline Program are eligible to be considered for ETSU Honors-in-Discipline scholarships. These cover full tuition and fees for a maximum of 8 semesters of study, contingent upon maintaining eligibility.

Out of State Students

Out of state students accepted into the ETSU Department of Physics & Astronomy Honors-in-Discipline Program are eligible for out of state tuition waivers.

Number of Credit Hours Required

The Department of Physics & Astronomy Honors-in-Discipline (HID) Program offers up to 38 hours of Physics Major courses plus a 6 hour Senior Thesis. In addition, 8 credit hours of Astronomy will be offered as honors enriched. All of the Physics honors courses are existing courses which have enrichment components for Honors students. The courses are described below.

Astronomy is not required for the Physics Major. An Honors-in-Discipline Physics Major requires the same courses as the regular Physics major, A minimum of 18 credit hours of honors courses, including the Senior Thesis, is required for a Physics HID Major. PHYS2110-20 may be taken as honors enriched, but is not required, and is not included in the 18 credit hour minimum requirement.

Honors-in-Discipline Program

Course Descriptions and Enrichment Experiences

Astronomy I and II

Astronomy I is an introductory course which includes historical astronomy, celestial motions, properties and observation of light, and physical characteristics of the solar system and the Sun. Includes laboratory activities involving telescope observations of the solar system and stellar objects. Designed for students desiring a laboratory science for its general education value. Astronomy II introduces students to the study of stars, galaxies, and the universe as a whole. Includes laboratory activities involving telescope observations of star systems, nebulae, and galaxies. Three hours lecture, two hours laboratory each week.Honors students will do a laboratory or theoretical component. The laboratory component will involve either observations with the ETSU observatory or remote observing with the SARA telescope, while the theoretical component will involve computer simulations of astronomical phenomenae. A final report will be required by honors students on this activity.

Technical Physics I and II

This is a year long, calculus-based physics course. It is a 5 credit hour course that meets every day. One day a week is for laboratory exercises. This is usually the first physics course that our majors take. It is also currently a required course for math majors, and pre-engineering students.For the Honors in Physics it is proposed to add 3-4 intensive laboratory exercises each semester. These would be more involved than the normal 1 and 1/2 hour weekly laboratory exercises. The new exercises will involve 2-3 week long projects centered around existing equipment in the Physics Department. We have lots of good demonstration equipment available as single lab stations. We do not use this equipment in regular labs because we have only single set ups.

The Honors in Physics students will use this laboratory equipment to do detailed experiments. The first semester experiments will involve a computer interface to accurately measure free fall, a new experiment on determining the moment of inertia of a flywheel, the Cavendish Experiment (to measure G), and an experiment on the computer to demonstrate chaos. The second semester will involve measuring the speed of light with new apparatus using fiber optics, a computer experiment to measure an RC time constant, microwave optics and electromagnetic waves.

Students will be required to perform the experiments and submit detailed lab reports.


This course studies statics and dynamics of particles and systems of particles. An introduction to Lagrangian and Hamiltonian formulations of Newtonian mechanics. Three one-hour lectures and one two-hour recitation session each week. Mechanics is one of the Department of Physics Oral and Technology Intensive courses. To meet the requirements of the Oral Intensive portion, students must present their weekly homework problems in front of the class, and present their semester long project during the last week of class. To meet the Technology Intensive portion, the students must do a weekly computer problem and have it ready for presentation in class.For the honors students, it is proposed to expand the semester long project. Term projects will consist of choosing a project that the student wants to work on, doing the work, and writing up a report. The project will then be presented to the faculty in a regular Physics Seminar. Some suggestions for topics are: the Foucault pendulum (build one that works), the three-body problem (a computer exercise like sending a rocket from the earth to the moon), study air resistance (indoors, i.e. on a computer, or outdoors, make measurements), nuclear scattering, Fourier methods, numerical methods (solving any of the simple computer homework problems with more elaborate numerical techniques), forced harmonic oscillator, and a study of chaos (build a circuit that exhibits chaos or study by numerical methods).


Geometrical optics including reflection, refraction, dispersion, thin and thick lenses, optical instruments. Physical optics including electromagnetic character of light, interference, diffraction, polarization, and related topics.For the Physics Honors Program, it is proposed to expand the semester long project. Term projects will consist of choosing a project that the student wants to work on, doing the work, and writing up a report. The project will then be presented to the class as a seminar. Some suggestions for term projects are: the electron microscope, x-ray diffraction, speckle astronomy, Doppler radar, Fourier spectroscopy, phase contrast microscopy, microwave optics, Michelson's stellar interferometer, long-baseline interferometers, and image enhancement.


This course is designed for students who desire to learn physics as applied to biology and medicine. Areas discussed include: the stellar origins of the molecules of life, molecular self organization, principles of nucleic acid structure, principles of protein structure, thermodynamics of living systems, instrumental techniques such as X-Ray crystallography, NMR spectroscopy, mass spectrometry, and biophysics topics of interest to the students The class is a combination of standard lecture and journal club format. Once a concept has been discussed in class, the students find journal articles for use as reference materials for class. There is one midterm exam, one final exam, and a research project consisting of a literature review of any topic of interest and a brief oral presentation of your project. The final project and presentation will be enlarged to accommodate honors students. In addition, hands on research opportunities in our labs will be made available for honors students. The honors students will present their projects at a regular physics seminar.Atomic & Nuclear Physics A semiquantitative introduction to the physics of the atom and its nucleus: constituent parts of atoms, atomic transmutation, nuclear fission and fusion, and related topics.Honors students will be required to choose a relevant topic in modern physics, and write a term paper on the subject. They must also present a seminar on the subject to the rest of the class.

Electricity & Magnetism

An intermediate-level course in electrostatics, dielectrics, magnetic materials and effects, development of Maxwell's equations. Three one-hour lectures and one two-hour recitations/laboratory session each week.This course is primarily a lecture/problem solution course. Honors students will be given more challenging problems. The problems will be a different set than those normally assigned in class which explores the topics in more depth. Problems will be taken from more advanced electrostatics texts, and from the problems in the class text.

Kinetic and Statistical Physics

This course deals with the flow of energy between matter and the associated properties of matter under conditions or states of equilibrium. In this course, we will investigate the basic laws of thermodynamics using both a macroscopic and a microscopic approach. The only prerequisite is Technical Physics I.Students taking this course for honors credit will be assigned additional more difficult problems for each problem set. They will also be required to write a term paper on a relevant topic in thermal physics. They must give a talk on the topic to the rest of the class.

Quantum Mechanics

An introduction to quantum theory and nonrelativistic quantum mechanics. Historical development of ideas which led to present-day theories. Schrodinger's equation and applications, approximation methods, matrix methods, and related topics. Three one-hour lectures and one two-hour recitation session each week.The honors component will consist of an independent computer modeling project related to the course, a 10-page paper describing the work, and an oral presentation of the work at the end of the semester. A list of possible projects will be supplied to the student (e.g., numerical solution of the Schrodinger Equation for the helium atom, development of white dwarf models based on the quantum mechanics of degenerate matter, etc.) or students can develop research projects on their own (with approval of the professor). Both the paper and the presentation will have to be on a professional level. Finally, note that the "regular" students do not have any "special" projects that are required of them.

Electromagnetic Theory

Principles of electromagnetic theory, Maxwell's equations, selected applications, and related topics. Three one-hour lectures and one two-hour recitation session each week.In light of Maxwell's Equations, polarization becomes a powerful tool for the study of scattering and absorption. Honors students will choose polarization, waveguides, dipole radiation, or syncrotron radiation as a topic and prepare a lecture for the class. The lecture will include a demonstration. Examples of topics include circular polarization in biophysics, or the scattering of light from interstellar grains.

Senior Thesis

The Department of Physics and Astronomy requires the completion of a senior Honors Thesis (PHYS4018) as their capstone course for the HID students. A faculty member in the Department, chosen by the student, will direct the year-long, 6 credit hour, thesis project. Two faculty members, one from Physics and Astronomy and one from outside the Physics and Astronomy Division will serve on an advisory committee with the project director and also act as readers of the thesis. The thesis will be defended publicly.


Retention Requirements

Retention in the Physics Honors Program includes at least 15 credit hours per semester and a minimum overall GPA of 3.2 in the first 30 credit hours, 3.3 for 30 to 45 credit hours, and 3.5 after 45 credit hours. Honors students who do not meet these requirements for one semester may request probation. Their current honors courses professors and the Honors Program Coordinator will meet with the student and make a decision regarding probation. If the student meets the retention requirements after the period of probation, then they will remain in the Physics Honors Program.

Graduation Requirements

To graduate with a Physics Honors Major, honors students must have completed all major course requirements and successfully completed and orally presented their senior Honors Theses. The overall minimum GPA must be 3.3 and GPA in physics must be 3.5. Honors students majoring in Physics may, at the option of the Honors in Discipline committee, be presented with a final exam in Physics. This exam would be similar to a graduate programs entrance exam, based on the better problems in the Physics textbook used in the Physics Department Technical Physics (PHYS2110-20) course.


icon for left menu icon for right menu