Patterns and Statistics for Set Partitions

Samantha Dahlberg
Robert Dorward
Jonathan Gerhard
Thomas Grubb
Carlin Purcell
Lindsey Reppuhn
Bruce E. Sagan

July 7, 2014
This work was performed with support from the Michigan State University REU program SURIEM, NSF grant 1062817, and NSA grant “RE-13-SURIEM-0613-msu-2-121015-Zeleke”.
Table of Contents

- **Introduction**
 - Pattern Avoidance in Set Partitions
 - Set Partitions and Restricted Growth Functions
 - Statistics on Restricted Growth Functions
 - Generating Functions

- **General Results**
 - Avoiding Patterns of Length 3
 - Avoiding Multiple Patterns of Length 3 and Patterns of Higher Length

- **Selected Results**
 - A Partial Characterization of $\text{LB}_n(123)$
 - Bijections
 - A q-analogue of the Catalan Numbers

- **Closing Remarks**
Patterns and statistics on set partitions have been looked at extensively, but mostly as separate entities.
Patterns and statistics on set partitions have been looked at extensively, but mostly as separate entities. The purpose of our project is to combine these two notions.
Patterns and statistics on set partitions have been looked at extensively, but mostly as separate entities. The purpose of our project is to combine these two notions. This produces interesting generating functions which we are studying.
We have been working with partitions of $[n] = \{1, 2, \ldots, n\}$.
Partitions and Sub-Partitions

We have been working with partitions of \([n] = \{1, 2, \ldots, n\}\).
\(\Pi_n\) is the set of all partitions of \([n]\).
We have been working with partitions of $[n] = \{1, 2, \ldots, n\}$.

Π_n is the set of all partitions of $[n]$.

Partitions are composed of *blocks*, denoted B_i. We will use the notation: $B_1/B_2/\ldots/B_k \vdash [n]$.

For example, let $[4] = \{1, 2, 3, 4\}$ and $\sigma = 1/24/3$. Then σ is a partition of $[4]$, and 24 is a block of σ.

If $S \subseteq [n]$ and $\sigma \vdash [n]$, then the partition σ' of S obtained by intersecting the blocks of σ with S is called a *subpartition* of σ. For example, if $\sigma = 14/236$ then $\sigma' = 26/4$ is the subpartition obtained by intersecting the blocks of σ with $\{2, 4, 6\}$.
Partitions and Sub-Partitions

We have been working with partitions of $[n] = \{1, 2, \ldots, n\}$.

Π_n is the set of all partitions of $[n]$.

Partitions are composed of blocks, denoted B_i. We will use the notation: $B_1/B_2/\ldots/B_k \vdash [n]$.

For example, let $[4] = \{1, 2, 3, 4\}$ and $\sigma = 1/24/3$. Then σ is a partition of $[4]$, and 24 is a block of σ.

Samantha Dahlberg Robert Dorward Jonathan Gerhard Thomas Grubb Carlin Purcell Lindsey Reppuhn Bruce E. Sagan

Patterns and Statistics for Set Partitions
We have been working with partitions of \([n] = \{1, 2, \ldots, n\}\).

\(\Pi_n\) is the set of all partitions of \([n]\).

Partitions are composed of blocks, denoted \(B_i\). We will use the notation: \(B_1/B_2/\ldots/B_k \vdash [n]\).

For example, let \([4] = \{1, 2, 3, 4\}\) and \(\sigma = 1/24/3\). Then \(\sigma\) is a partition of \([4]\), and 24 is a block of \(\sigma\).

If \(S \subseteq [n]\) and \(\sigma \vdash [n]\), then the partition \(\sigma'\) of \(S\) obtained by intersecting the blocks of \(\sigma\) with \(S\) is called a subpartition of \(\sigma\).
We have been working with partitions of $[n] = \{1, 2, \ldots, n\}$.

Π_n is the set of all partitions of $[n]$.

Partitions are composed of \textit{blocks}, denoted B_i. We will use the notation: $B_1/B_2/\ldots/B_k \vdash [n]$.

For example, let $[4] = \{1, 2, 3, 4\}$ and $\sigma = 1/24/3$. Then σ is a partition of $[4]$, and 24 is a block of σ.

If $S \subseteq [n]$ and $\sigma \vdash [n]$, then the partition σ' of S obtained by intersecting the blocks of σ with S is called a \textit{subpartition} of σ.

For example, if $\sigma = 14/236/5$ then $\sigma' = 26/4$ is the subpartition obtained by intersecting the blocks of σ with $\{2, 4, 6\}$.
We define a standardization map \(st(\sigma) \) that maps the smallest integer in the subpartition to 1, the second smallest to 2, etc. We say \(\sigma \) contains \(\pi \), which we call the pattern, if there is a subpartition \(\sigma' \) such that \(st(\sigma') = \pi \). Otherwise we say \(\sigma \) avoids \(\pi \).
Pattern Containment and Avoidance

We define a standardization map $st(\sigma)$ that maps the smallest integer in the subpartition to 1, the second smallest to 2, etc. We say σ contains π, which we call the pattern, if there is a subpartition σ' such that $st(\sigma') = \pi$. Otherwise we say σ avoids π.

For example, if $\sigma = 14/236/5$ then σ contains $\pi = 13/2$ since $st(26/4) = 13/2$.
We define a standardization map $st(\sigma)$ that maps the smallest integer in the subpartition to 1, the second smallest to 2, etc. We say σ contains π, which we call the pattern, if there is a subpartition σ' such that $st(\sigma') = \pi$. Otherwise we say σ avoids π.

For example, if $\sigma = 14/236/5$ then σ contains $\pi = 13/2$ since $st(26/4) = 13/2$. But σ avoids $\pi = 123/4$ since there are no three numbers in a block with a larger number in another block.
We define a standardization map $st(\sigma)$ that maps the smallest integer in the subpartition to 1, the second smallest to 2, etc. We say σ contains π, which we call the pattern, if there is a subpartition σ' such that $st(\sigma') = \pi$. Otherwise we say σ avoids π.

For example, if $\sigma = 14/236/5$ then σ contains $\pi = 13/2$ since $st(26/4) = 13/2$. But σ avoids $\pi = 123/4$ since there are no three numbers in a block with a larger number in another block.

For $n \geq 0$, we denote the set of partitions which avoid π by

$$\Pi_n(\pi) = \{\sigma \in \Pi_n : \sigma \text{ avoids } \pi\}.$$
We define a standardization map \(st(\sigma) \) that maps the smallest integer in the subpartiton to 1, the second smallest to 2, etc. We say \(\sigma \) contains \(\pi \), which we call the pattern, if there is a subpartition \(\sigma' \) such that \(st(\sigma') = \pi \). Otherwise we say \(\sigma \) avoids \(\pi \).

For example, if \(\sigma = 14/236/5 \) then \(\sigma \) contains \(\pi = 13/2 \) since \(st(26/4) = 13/2 \). But \(\sigma \) avoids \(\pi = 123/4 \) since there are no three numbers in a block with a larger number in another block.

For \(n \geq 0 \), we denote the set of partitions which avoid \(\pi \) by

\[
\Pi_n(\pi) = \{ \sigma \in \Pi_n : \sigma \text{ avoids } \pi \}.
\]

The cardinalities \(|\Pi_n(\pi)| \) were determined by Sagan [2] for patterns for length = 3.
Standard Form and Restricted Growth Functions

We say a partition, $\sigma = B_1/B_2/.../B_k$, is in standard form if

$$\min(B_1) < \min(B_2) < ... < \min(B_k).$$

A restricted growth function (RGF) is a sequence of positive integers, $w = a_1...a_n$, such that $a_1 = 1$ and for all $k \geq 2$,

$$a_k \leq 1 + \max(1, 2, ..., a_{k-1}).$$
We say a partition, $\sigma = B_1/B_2/.../B_k$, is in standard form if

$$\min(B_1) < \min(B_2) < ... < \min(B_k).$$

A restricted growth function (RGF) is a sequence of positive integers, $w = a_1...a_n$, such that $a_1 = 1$ and for all $k \geq 2$,

$$a_k \leq 1 + \max(1, 2, ..., a_{k-1}).$$

For example, $w = 112343213$ is a valid RGF while $w = 1235321$ is not.
We say a partition, $\sigma = B_1/B_2/.../B_k$, is in standard form if
$$\min(B_1) < \min(B_2) < \ldots < \min(B_k).$$

A restricted growth function (RGF) is a sequence of positive integers, $w = a_1...a_n$, such that $a_1 = 1$ and for all $k \geq 2$,
$$a_k \leq 1 + \max(1, 2, \ldots, a_{k-1}).$$

For example, $w = 112343213$ is a valid RGF while $w = 1235321$ is not.

Given a partition, $\sigma = B_1/B_2/.../B_k$ in standard form, it has an associated restricted growth function $w = w(\pi) = a_1a_2...a_n$ where
$$a_i = j \text{ if } i \text{ is in block } j.$$
We say a partition, \(\sigma = B_1/B_2/.../B_k \), is in standard form if \(\min(B_1) < \min(B_2) < ... < \min(B_k) \).

A restricted growth function (RGF) is a sequence of positive integers, \(w = a_1...a_n \), such that \(a_1 = 1 \) and for all \(k \geq 2 \),

\[
a_k \leq 1 + \max(1, 2, ..., a_{k-1}).
\]

For example, \(w = 112343213 \) is a valid RGF while \(w = 1235321 \) is not.

Given a partition, \(\sigma = B_1/B_2/.../B_k \) in standard form, it has an associated restricted growth function \(w = w(\pi) = a_1a_2...a_n \) where

\[
a_i = j \text{ if } i \text{ is in block } j.
\]

For example, \(137/24/56 \mapsto 1212331 \).
We are studying four statistics on RGFs defined by Michelle Wachs and Dennis White [3].

\[\text{lb}(w), \text{ls}(w), \text{rb}(w), \text{rs}(w) \]

- \(\text{lb}(w) \) is defined as the sum of \(\text{lb}_i(w) \) over all \(i \), where \(\text{lb}_i(w) \) is the number of integers to the left of \(w_i \) which are also bigger than \(w_i \). (Note that multiple copies of the same integer are only counted once.)
We are studying four statistics on RGFs defined by Michelle Wachs and Dennis White [3].

\(\text{lb}(w), \text{ls}(w), \text{rb}(w), \text{rs}(w) \), with “l” meaning left, “r” meaning right, “b” meaning bigger, and “s” meaning smaller.
We are studying four statistics on RGFs defined by Michelle Wachs and Dennis White [3].

\(\text{lb}(w) \), \(\text{ls}(w) \), \(\text{rb}(w) \), \(\text{rs}(w) \), with “l” meaning left, “r” meaning right, “b” meaning bigger, and “s” meaning smaller.

Define the lb statistic

\[
\text{lb}(w) = \sum_{i} \text{lb}_i(w)
\]

where \(\text{lb}_i(w) \) is the number of integers to the left of \(w_i \) which are also bigger than \(w_i \). (Note that multiple copies of the same integer are only counted once.)
For example, suppose $w = 1 2 2 1 3 1 2$. Then $\text{lb}(w) = 0 + 0 + 0 + 1 + 0 + 2 + 1 = 4$. We can then use each statistic to create a generating function (polynomial). For lb, $LB_n(\pi) = LB_n(\pi; q) = \sum_{\sigma \in \Pi_n(\pi)} q^{\text{lb}(w(\sigma))}$. Note that the coefficient of q^k will be the number of partitions in the avoidance class of π that have an lb of k. Other statistics have polynomials defined in a similar manner.
Statistics

For example, suppose

\[w = 1 2 2 1 3 1 2 \]

Then

\[\text{lb}(w) = 0 + 0 + 0 + 1 + 0 + 2 + 1 \]

So then, \(\text{lb}(w) = 4 \).
For example, suppose
\[w = 1 \ 2 \ 2 \ 1 \ 3 \ 1 \ 2 \]
\[\text{lb}(w) = 0 + 0 + 0 + 1 + 0 + 2 + 1 \]

So then, \(\text{lb}(w) = 4 \).
For example, suppose
\[w = 1 \ 2 \ 2 \ 1 \ 3 \ 1 \ 2 \]
\[\text{lb}(w) = 0 + 0 + 0 + 1 + 0 + 2 + 1 \]

So then, \(\text{lb}(w) = 4 \).
Statistics

For example, suppose
\[w = 1 \ 2 \ 2 \ 1 \ 3 \ 1 \ 2 \]
\[\text{lb}(w) = 0 + 0 + 0 + 1 + 0 + 2 + 1 \]

So then, \(\text{lb}(w) = 4 \).
For example, suppose
\(w = 1 \ 2 \ 2 \ 1 \ 3 \ 1 \ 2 \)
\(\text{lb}(w) = 0 + 0 + 0 + 1 + 0 + 2 + 1 \)
So then, \(\text{lb}(w) = 4 \).
For example, suppose
\[w = 1 \ 2 \ 2 \ 1 \ 3 \ 1 \ 2 \]
\[\text{lb}(w) = 0 + 0 + 0 + 1 + 0 + 2 + 1 \]
So then, \(\text{lb}(w) = 4. \)
For example, suppose
\[w = 1 \ 2 \ 2 \ 1 \ 3 \ 1 \ 2 \]
\[\text{lb}(w) = 0 + 0 + 0 + 1 + 0 + 2 + 1 \]
So then, \(\text{lb}(w) = 4 \).
For example, suppose
\[w = 1 \ 2 \ 2 \ 1 \ 3 \ 1 \ 2 \]
\[\text{lb}(w) = 0 + 0 + 0 + 1 + 0 + 2 + 1 \]
So then, \(\text{lb}(w) = 4 \).
For example, suppose
\(w = 1 \ 2 \ 2 \ 1 \ 3 \ 1 \ 2 \)
\(\text{lb}(w) = 0 + 0 + 0 + 1 + 0 + 2 + 1 \)
So then, \(\text{lb}(w) = 4 \).
We can then use each statistic to create a generating function (polynomial). For \(\text{lb}, \)
\[
\text{LB}_n(\pi) = \text{LB}_n(\pi; q) = \sum_{\sigma \in \Pi_n(\pi)} q^{\text{lb}(w(\sigma))}.
\]
For example, suppose
\[w = 1 \ 2 \ 2 \ 1 \ 3 \ 1 \ 2 \]
\[\text{lb}(w) = 0 + 0 + 0 + 1 + 0 + 2 + 1 \]
So then, \(\text{lb}(w) = 4 \).

We can then use each statistic to create a generating function (polynomial). For lb,

\[
LB_n(\pi) = LB_n(\pi; q) = \sum_{\sigma \in \Pi_n(\pi)} q^{\text{lb}(w(\sigma))}.
\]

Note that the coefficient of \(q^k \) will be the number of partitions in the avoidance class of \(\pi \) that have an lb of k. Other statistics have polynomials defined in a similar manner.
<table>
<thead>
<tr>
<th>Statistics</th>
<th>Set Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB</td>
<td>1 + (\sum_{k=0}^{n-2} \binom{n-1}{k+1} q^k)</td>
</tr>
<tr>
<td>LS</td>
<td>(\sum_{k=0}^{n-1} \binom{n-1}{k} q^k)</td>
</tr>
<tr>
<td>RB</td>
<td>(\sum_{k=0}^{n-1} \binom{n-1}{k} q^k)</td>
</tr>
<tr>
<td>RS</td>
<td>1 + (\sum_{k=0}^{n-2} \binom{n-1}{k+1} q^k)</td>
</tr>
</tbody>
</table>
Characterizations For 1/23

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Set Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB</td>
<td>$1 + \sum_{k=0}^{n-2} (n - k - 1)q^k$</td>
</tr>
<tr>
<td>LS</td>
<td>$q^{T_{n-1}} + \sum_{i=0}^{n-2} (i + 1)q^{T_i}$</td>
</tr>
<tr>
<td>RB</td>
<td>$q^{T_{n-1}} + \sum_{j=1}^{n-1} \sum_{i=0}^{n-j-1} q^{i(n-j-1)+T_{n-j-2+i}}$</td>
</tr>
<tr>
<td>RS</td>
<td>$1 + \sum_{k=0}^{n-2} (n - k - 1)q^k$</td>
</tr>
</tbody>
</table>

Note that T_n is the nth triangular number, which is the sum $1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$.
Characterizations For 12/3

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Set Partition</th>
</tr>
</thead>
</table>
| **LB** | \[
\left\lfloor \frac{(n-1)^2}{4} \right\rfloor \sum_{k=0} D_k q^k
\]
| **LS** | \[q^{T_{n-1}} + \sum_{j=1}^{n-1} \sum_{i=1}^{n-j} q^{T_{n-j-1}+j(i-1)}\]
| **RB** | \[q^{T_{n-1}} + \sum_{j=1}^{n-1} (n - j)q^{T_{n-j-1}}\]
| **RS** | \[1 + \sum_{k=0}^{n-2} (n - 1 - k)q^k\]

\[D_k = \#\{d : d \mid k \text{ and } d + \frac{k}{d} + 1 \leq n\}\]

Note that \(D_k = \tau(k)\) for \(k \leq n - 2\).
Characterizations For 13/2

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Set Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB</td>
<td>2^{n-1}</td>
</tr>
<tr>
<td>LS[1]</td>
<td>$\prod_{i=1}^{n-1} (1 + q^i)$</td>
</tr>
<tr>
<td>RB[1]</td>
<td>$\prod_{i=1}^{n-1} (1 + q^i)$</td>
</tr>
<tr>
<td>RS</td>
<td>2^{n-1}</td>
</tr>
</tbody>
</table>
Characterizations For 123

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Set Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB</td>
<td>Partial Characterization, See Below</td>
</tr>
<tr>
<td>LS</td>
<td>Partial Characterization</td>
</tr>
<tr>
<td>RB</td>
<td>Partial Characterization</td>
</tr>
<tr>
<td>RS</td>
<td>Partial Characterization</td>
</tr>
</tbody>
</table>

The polynomial $LB_n(123)$ has degree $\left\lfloor \frac{n(n-1)}{6} \right\rfloor$.
Let P be a set of partitions. We let

$$\Pi_n(P) = \{\sigma : \sigma \text{ partitions } [n] \text{ and avoids every } \pi \in P\}$$
Let P be a set of partitions. We let

$$\Pi_n(P) = \{\sigma : \sigma \text{ partitions } \llbracket n \rrbracket \text{ and avoids every } \pi \in P\}$$

We have characterized all of the statistics for patterns of length 3 pair wise, as well as some of length four.
Theorem (D,D,G,G,P,R,S)\n
The polynomial $LB_n(123)$ has degree equal to $\left\lfloor n \left(n - 1 \right) / 6 \right\rfloor$.

First, note that $\sigma = B_1 / ... / B_k$ avoids 123 if and only if $|B_i| \leq 2$ for all i. So the corresponding RGF, w, has every entry repeated at most twice.

Define the initial run of $w = a_1 a_2 ... a_n$ to be the longest initial string of the form $12...i$.

Patterns and Statistics for Set Partitions
The polynomial $\text{LB}_n(123)$ has degree equal to

$$\left\lfloor \frac{n(n-1)}{6} \right\rfloor.$$
The polynomial\(\text{LB}_n(123) \) has degree equal to \(\left\lfloor \frac{n(n-1)}{6} \right\rfloor \).

First, note that \(\sigma = B_1/\ldots/B_k \) avoids 123 if and only if \(|B_i| \leq 2 \) for all \(i \).
The polynomial $LB_n(123)$ has degree equal to $\left\lfloor \frac{n(n-1)}{6} \right\rfloor$.

First, note that $\sigma = B_1/\ldots/B_k$ avoids 123 if and only if $|B_i| \leq 2$ for all i. So the corresponding RGF, w, has every entry repeated at most twice.
The polynomial $LB_n(123)$ has degree equal to \[\lfloor \frac{n(n-1)}{6} \rfloor. \]

First, note that $\sigma = B_1/\ldots/B_k$ avoids 123 if and only if $|B_i| \leq 2$ for all i. So the corresponding RGF, w, has every entry repeated at most twice. Define the initial run of $w = a_1a_2\ldots a_n$ to be the longest initial string of the form $12\ldots i$.
We first show that a word of the form \(w = 123 \ldots ia_{i+1} \ldots a_n \) with \(a_{i+1} \ldots a_n \leq i \) and \(\{a_{i+1}, \ldots, a_n\} = [n - i] \) maximizes the lb statistic.
Proving the Partial Characterization of $LB_n(123)$

We first show that a word of the form $w = 123 \ldots ia_{i+1} \ldots a_n$ with $a_{i+1} \ldots a_n \leq i$ and $\{a_{i+1}, \ldots, a_n\} = [n – i]$ maximizes the lb statistic.

Proof.

To do this, we show that the numbers after the initial run $123 \ldots i$ must be less than or equal to i, and then show that they form a permutation of the numbers $[1, n – i]$.

To prove the former, assume towards a contradiction that there exists an element a_j with $a_j \geq i + 1$. By the structure of the RGF, there must be at least one element equal to $i + 1$. Locate the first such element. By swapping a_{i+1} and the first $i + 1$, the lb actually increases. Because of this, we know that the original RGF was not maximal, which is a contradiction.

Proving the second claim is a similar process.
We first show that a word of the form \(w = 123 \ldots ia_{i+1} \ldots a_n \) with \(a_{i+1} \ldots a_n \leq i \) and \(\{a_{i+1}, \ldots, a_n\} = [n - i] \) maximizes the \(\text{lb} \) statistic.

Proof.

To do this, we show that the numbers after the initial run \(123 \ldots i \) must be less than or equal to \(i \), and then show that they form a permutation of the numbers \([1, n - i]\).
We first show that a word of the form $w = 123 \ldots ia_{i+1} \ldots a_n$ with $a_{i+1} \ldots a_n \leq i$ and $\{a_{i+1}, \ldots, a_n\} = [n - i]$ maximizes the lb statistic.

Proof.

To do this, we show that the numbers after the initial run $123 \ldots i$ must be less than or equal to i, and then show that they form a permutation of the numbers $[1, n - i]$. To prove the former, assume towards a contradiction that there exists an element a_j with $a_j \geq i + 1$. By the structure of the RGF, there must be at least one element equal to $i + 1$. Locate the first such element. By swapping a_{i+1} and the first $i+1$, the lb actually increases. Because of this, we know that the original RGF was not maximal, which is a contradiction. Proving the second claim is a similar process.
We first show that a word of the form \(w = 123 \ldots i a_{i+1} \ldots a_n \) with \(a_{i+1} \ldots a_n \leq i \) and \(\{a_{i+1}, \ldots, a_n\} = [n - i] \) maximizes the lb statistic.

Proof.

To do this, we show that the numbers after the initial run \(123 \ldots i \) must be less than or equal to \(i \), and then show that they form a permutation of the numbers \([1, n - i]\). To prove the former, assume towards a contradiction that there exists an element \(a_j \) with \(a_j \geq i + 1 \). By the structure of the RGF, there must be at least one element equal to \(i + 1 \). Locate the first such element.
We first show that a word of the form \(w = 123 \ldots ia_{i+1} \ldots a_n \) with \(a_{i+1} \ldots a_n \leq i \) and \(\{a_{i+1}, \ldots, a_n\} = [n - i] \) maximizes the lb statistic.

Proof.

To do this, we show that the numbers after the initial run \(123 \ldots i \) must be less than or equal to \(i \), and then show that they form a permutation of the numbers \([1, n - i] \). To prove the former, assume towards a contradiction that there exists an element \(a_j \) with \(a_j \geq i + 1 \). By the structure of the RGF, there must be at least one element equal to \(i + 1 \). Locate the first such element. By swapping \(a_{i+1} \) and the first \(i + 1 \), the lb actually increases.
We first show that a word of the form $w = 123 \ldots i a_{i+1} \ldots a_n$ with $a_{i+1} \ldots a_n \leq i$ and $\{a_{i+1}, \ldots, a_n\} = [n - i]$ maximizes the lb statistic.

Proof.

To do this, we show that the numbers after the initial run $123 \ldots i$ must be less than or equal to i, and then show that they form a permutation of the numbers $[1, n - i]$. To prove the former, assume towards a contradiction that there exists an element a_j with $a_j \geq i + 1$. By the structure of the RGF, there must be at least one element equal to $i + 1$. Locate the first such element. By swapping a_{i+1} and the first $i + 1$, the lb actually increases. Because of this, we know that the original RGF was not maximal, which is a contradiction.
We first show that a word of the form \(w = 123 \ldots ia_{i+1} \ldots a_n \) with \(a_{i+1} \ldots a_n \leq i \) and \(\{ a_{i+1}, \ldots, a_n \} = [n - i] \) maximizes the lb statistic.

Proof.

To do this, we show that the numbers after the initial run 123 \(\ldots i \) must be less than or equal to \(i \), and then show that they form a permutation of the numbers [1, \(n - i \)]. To prove the former, assume towards a contradiction that there exists an element \(a_j \) with \(a_j \geq i + 1 \). By the structure of the RGF, there must be at least one element equal to \(i + 1 \). Locate the first such element. By swapping \(a_{i+1} \) and the first \(i + 1 \), the lb actually increases. Because of this, we know that the original RGF was not maximal, which is a contradiction. Proving the second claim is a similar process.
Now that we know that our word can be put into the form
\(w = 123\ldots ia_{i+1}\ldots a_n \) with \(a_{i+1}\ldots a_n \leq i \) and
\(\{a_{i+1}\ldots a_n\} = [n - i] \), we must pick the value of \(i \) to maximize \(\text{lb} \).
Now that we know that our word can be put into the form $w = 123 \ldots ia_{i+1} \ldots a_n$ with $a_{i+1} \ldots a_n \leq i$ and \{a_{i+1} \ldots a_n\} = [n - i], we must pick the value of i to maximize lb.

Proof.

Each element j after our initial run contributes $i - j$ to lb. So $lb(w) = \sum_{j=1}^{n-i} (i - j)$. Since this is an arithmetic progression, this simplifies to:

$$f(i) = (i-1) + (2i - n) = \frac{-3i^2 + 4ni + i - n^2}{2}.$$

To maximize, we compute the derivative of f with respect to i to get $\left(-\frac{6i + 4n + 1}{2}\right)$ and set this equal to zero to obtain $i = \frac{4n + 1}{6}$.

Samuel Dahlberg Robert Dorward Jonathan Gerhard Thomas Grubb Carlin Purcell Lindsey Reppuhn Bruce E. Sagan
Patterns and Statistics for Set Partitions
Now that we know that our word can be put into the form
\(w = 123 \ldots ia_{i+1} \ldots a_n \) with \(a_{i+1} \ldots a_n \leq i \) and
\(\{a_{i+1} \ldots a_n\} = [n - i] \), we must pick the value of \(i \) to maximize \(lb \).

Proof.

Each element \(j \) after our initial run contributes \(i - j \) to \(lb \).
Now that we know that our word can be put into the form
\(w = 123 \ldots ia_{i+1} \ldots a_n \) with \(a_{i+1} \ldots a_n \leq i \) and
\(\{a_{i+1} \ldots a_n\} = [n - i] \), we must pick the value of \(i \) to maximize \(lb \).

Proof.

Each element \(j \) after our initial run contributes \(i - j \) to \(lb \). So
\[
lb(w) = \sum_{j=1}^{n-i} (i - j).
\]
Now that we know that our word can be put into the form
\[w = 123 \ldots ia_{i+1} \ldots a_n \] with \(a_{i+1} \ldots a_n \leq i \) and
\(\{a_{i+1} \ldots a_n\} = [n - i] \), we must pick the value of \(i \) to maximize \(\text{lb} \).

Proof.

Each element \(j \) after our initial run contributes \(i - j \) to \(\text{lb} \). So
\[\text{lb}(w) = \sum_{j=1}^{n-i} (i - j) \]. Since this is an arithmetic progression, this simplifies to:

\[
f(i) = \frac{(i - 1) + (2i - n)}{2}(n - i) = \frac{-3i^2 + 4ni + i - n^2 - n}{2}.
\]
Now that we know that our word can be put into the form
\(w = 123 \ldots ia_{i+1} \ldots a_n \) with \(a_{i+1} \ldots a_n \leq i \) and
\(\{a_{i+1} \ldots a_n\} = [n - i] \), we must pick the value of \(i \) to maximize \(\text{lb} \).

Proof.

Each element \(j \) after our initial run contributes \(i - j \) to \(\text{lb} \). So
\[
\text{lb}(w) = \sum_{j=1}^{n-i} (i - j).
\]
Since this is an arithmetic progression, this simplifies to:
\[
f(i) = \frac{(i - 1) + (2i - n)}{2} (n - i) = \frac{-3i^2 + 4ni + i - n^2 - n}{2}.
\]
To maximize, we compute the derivative of \(f \) with respect to \(i \) to get
\[
(-6i + 4n + 1)/2 \]
and set this equal to zero to obtain
\[
i = (4n + 1)/6.
\]
Since we only want integer values of i, we utilize the ceiling and floor functions to find the nearest whole number on a case to case basis as follows:

\[
\begin{align*}
 i &= \lfloor \frac{4n+1}{6} \rfloor \\
 i &= \lceil \frac{4n+1}{6} \rceil \\
\end{align*}
\]

for integer values of k. Finally, by substituting our values of i into the equation for the $\text{LB}_n(123)$ sum and using algebraic manipulations, we come up with the maximum value of LB_n being $\lfloor \frac{n(n-1)}{6} \rfloor$.
Since we only want integer values of i, we utilize the ceiling and floor functions to find the nearest whole number on a case to case basis as follows:

\[
\begin{align*}
 i &= \left\lfloor \frac{4n+1}{6} \right\rfloor & \text{if } n = 3k, \\
 i &= \left\lceil \frac{4n+1}{6} \right\rceil & \text{if } n = 3k + 1, \\
 i &= \left\lfloor \frac{4n+1}{6} \right\rfloor \text{ or } \left\lceil \frac{4n+1}{6} \right\rceil & \text{if } n = 3k + 2.
\end{align*}
\]

(1)

for integer values of k.

Finally, by substituting our values of i into the equation for the LB sum and using algebraic manipulations, we come up with the maximum value of $\text{LB}_n(123)$ being $\left\lfloor \frac{n(n-1)}{6} \right\rfloor$.
Proving the Partial Characterization of LB\(_n(123)\)

Since we only want integer values of \(i\), we utilize the ceiling and floor functions to find the nearest whole number on a case to case basis as follows:

\[
\begin{align*}
 i &= \left\lfloor \frac{4n+1}{6} \right\rfloor & \text{if } n = 3k, \\
 i &= \left\lceil \frac{4n+1}{6} \right\rceil & \text{if } n = 3k + 1, \\
 i &= \left\lfloor \frac{4n+1}{6} \right\rfloor \text{ or } \left\lceil \frac{4n+1}{6} \right\rceil & \text{if } n = 3k + 2.
\end{align*}
\]

(1)

for integer values of \(k\). Finally, by substituting our values of \(i\) into the equation for the lb sum and using algebraic manipulations, we come up with the maximum value of lb being \(\left\lfloor n(n - 1)/6 \right\rfloor\). \(\square\)
Bijections

In looking at these avoidance classes, it can be interesting to find bijections between avoidance classes, $\Pi_n(\alpha)$ and $\Pi_n(\beta)$. More specifically, if $\pi \in \Pi_n(\alpha)$ and $\sigma \in \Pi_n(\beta)$, and s and t are two statistics on set partitions, we want a bijection $\phi: \Pi_n(\alpha) \mapsto \Pi_n(\beta)$ with:

$$\phi(\pi) = \sigma \Rightarrow s(\pi) = t(\sigma).$$

Finding such a bijection between $\Pi_n(\alpha)$ and $\Pi_n(\beta)$ gives

$$\sum_{\pi \in \Pi_n(\alpha)} q^{s(\pi)} = \sum_{\sigma \in \Pi_n(\beta)} q^{t(\sigma)}.$$
In looking at these avoidance classes, it can be interesting to find bijections between avoidance classes, $\Pi_n(\alpha)$ and $\Pi_n(\beta)$.
In looking at these avoidance classes, it can be interesting to find bijections between avoidance classes, $\Pi_n(\alpha)$ and $\Pi_n(\beta)$. More specifically, if $\pi \in \Pi_n(\alpha)$ and $\sigma \in \Pi_n(\beta)$, and s and t are two statistics on set partitions, we want a bijection

$$\phi : \Pi_n(\alpha) \leftrightarrow \Pi_n(\beta)$$

with:

$$\phi(\pi) = \sigma \implies s(\pi) = t(\sigma).$$
In looking at these avoidance classes, it can be interesting to find bijections between avoidance classes, $\Pi_n(\alpha)$ and $\Pi_n(\beta)$. More specifically, if $\pi \in \Pi_n(\alpha)$ and $\sigma \in \Pi_n(\beta)$, and s and t are two statistics on set partitions, we want a bijection

$$\phi : \Pi_n(\alpha) \mapsto \Pi_n(\beta)$$

with:

$$\phi(\pi) = \sigma \implies s(\pi) = t(\sigma).$$

Finding such a bijection between $\Pi_n(\alpha)$ and $\Pi_n(\beta)$ gives

$$\sum_{\pi \in \Pi_n(\alpha)} q^{s(\pi)} = \sum_{\sigma \in \Pi_n(\beta)} q^{t(\sigma)}. \quad (2)$$
Bijections

Theorem (D,D,G,G,P,R,S)

There exists a bijection $\phi : \Pi_n(1/2/3) \mapsto \Pi_n(1/2/3)$ that satisfies,

$\forall \pi \in \Pi_n(1/2/3), \, \text{lb}(\pi) = \text{rs}(\phi(\pi))$.

Proof.
For a given partition $\pi \in \Pi_n(1/2/3)$, let $w = a_1 a_2 \ldots a_n$ be its associated RGF, which consists of only ones and twos.

Letting $\phi(w) = w' = a_1 (3 - a_n)(3 - a_n - 1) \ldots (3 - a_2)$ gives our desired bijection.

Showing that ϕ is well defined is a simple process.

To show that ϕ takes lb to rs, examine some element a_i in w. The reversal and complementation guarantees that a left bigger from a_i in w leads to a right smaller caused by the image of a_i in w'.

Since the statistics are sums of parts, and there is a correspondence between the statistics on the parts, $\text{lb}(w) = \text{rs}(\phi(w))$.

Samantha Dahlberg Robert Dorward Jonathan Gerhard Thomas Grubb Carlin Purcell Lindsey Reppuhn Bruce E. Sagan
Patterns and Statistics for Set Partitions
There exists a bijection $\phi : \Pi_n(1/2/3) \mapsto \Pi_n(1/2/3)$ that satisfies,
$\forall \pi \in \Pi_n(1/2/3), \text{lb}(\pi) = \text{rs}(\phi(\pi))$.

Proof.
For a given partition $\pi \in \Pi_n(1/2/3)$, let $w = a_1a_2\ldots a_n$ be its associated RGF, which consists of only ones and twos.
Theorem (D,D,G,G,P,R,S)

There exists a bijection $\phi : \Pi_n(1/2/3) \mapsto \Pi_n(1/2/3)$ that satisfies,

$$\forall \pi \in \Pi_n(1/2/3), \ lb(\pi) = rs(\phi(\pi)).$$

Proof.

For a given partition $\pi \in \Pi_n(1/2/3)$, let $w = a_1 a_2 \ldots a_n$ be its associated RGF, which consists of only ones and twos. Letting $\phi(w) = w' = a_1(3 - a_n)(3 - a_{n-1}) \ldots (3 - a_2)$ gives our desired bijection.
Theorem (D,D,G,G,P,R,S)

There exists a bijection $\phi : \Pi_n(1/2/3) \mapsto \Pi_n(1/2/3)$ that satisfies,
$\forall \pi \in \Pi_n(1/2/3)$, $lb(\pi) = rs(\phi(\pi))$.

Proof.

For a given partition $\pi \in \Pi_n(1/2/3)$, let $w = a_1 a_2 \ldots a_n$ be its associated RGF, which consists of only ones and twos. Letting $\phi(w) = w' = a_1(3-a_n)(3-a_{n-1})\ldots(3-a_2)$ gives our desired bijection. Showing that ϕ is well defined is a simple process.
Bijections

Theorem (D,D,G,G,P,R,S)

There exists a bijection \(\phi : \Pi_n(1/2/3) \mapsto \Pi_n(1/2/3) \) that satisfies,
\[
\forall \pi \in \Pi_n(1/2/3), \quad lb(\pi) = rs(\phi(\pi)).
\]

Proof.

For a given partition \(\pi \in \Pi_n(1/2/3) \), let \(w = a_1 a_2 \ldots a_n \) be its associated RGF, which consists of only ones and twos. Letting \(\phi(w) = w' = a_1 (3 - a_n)(3 - a_{n-1}) \ldots (3 - a_2) \) gives our desired bijection. Showing that \(\phi \) is well defined is a simple process. To show that \(\phi \) takes \(lb \) to \(rs \), examine some element \(a_i \) in \(w \). The reversal and complementation guarantees that a left bigger from \(a_i \) in \(w \) leads to a right smaller caused by the image of \(a_i \) in \(w' \).
Theorem (D,D,G,G,P,R,S)

There exists a bijection \(\phi : \Pi_n(1/2/3) \mapsto \Pi_n(1/2/3) \) that satisfies, \(\forall \pi \in \Pi_n(1/2/3), \text{lb}(\pi) = \text{rs}(\phi(\pi)) \).

Proof.

For a given partition \(\pi \in \Pi_n(1/2/3) \), let \(w = a_1 a_2 \ldots a_n \) be its associated RGF, which consists of only ones and twos. Letting \(\phi(w) = w' = a_1(3 - a_n)(3 - a_{n-1})\ldots(3 - a_2) \) gives our desired bijection. Showing that \(\phi \) is well defined is a simple process. To show that \(\phi \) takes lb to rs, examine some element \(a_i \) in \(w \). The reversal and complementation guarantees that a left bigger from \(a_i \) in \(w \) leads to a right smaller caused by the image of \(a_i \) in \(w' \). Since the statistics are sums of parts, and there is a correspondence between the statistics on the parts, \(\text{lb}(w) = \text{rs}(\phi(w)) \).
For Example

Let $\pi = 14/235 \in \Pi_n(1/2/3)$, with associated RGF

$$w = 12212.$$
A \(q \)-analogue of the Catalan numbers

The partitions avoiding 13/24 are the noncrossing partitions. Therefore \(|\Pi_n(13/24)| = C_n\). They are related to 2-colored Motzkin paths which are a Motzkin paths where each level step has been colored one of two colors.

Theorem (D,D,G,G,P,R,S)

Let \(RS_n = RS_n(13/24)\). Then this polynomial satisfies the initial condition \(RS_0 = 1 \) and the recurrence

\[
RS_n = 2 RS_{n-1} + \sum_{k=1}^{n-2} q^k RS_k RS_{n-k-1}.
\]

This generating function is the same as the one for 2-colored Motzkin paths with \(n \) vertices by area.
The bijection used to prove this recurrence for $RS_n(13/24)$ is very similar to the direct sum of permutations and exactly the same as the bijection used by Chen, Dai, Dokos, Dwyer, and Sagan to prove a conjecture of Duncan and Steingrímsson on ascent sequences.

In future work, we hope to prove the following conjecture:

Conjecture

We have the equality

$$RS_n(13/24) = LB_n(13/24).$$
In Conclusion

Where to next?

- Patterns of Longer Length
- Multivariate Generating Functions
- 123
- 13/24
- Polynomials Generated by Other Statistics
Thank You! Any questions?
Adam M. Goyt, Bruce E. Sagan.
Set partition statistics and q-Fibonacci numbers

Bruce E. Sagan.
Pattern avoidance in set partitions

Michelle Wachs and Dennis White.
p, q-Stirling numbers and set partition statistics.